
Classification on Data with Biased Class Distribution

Slobodan Vucetic1 and Zoran Obradovic2

1 School of Electrical Engineering and Computer Science, Washington State University,
Pullman, 99164 WA, USA

svucetic@eecs.wsu.edu
2 Center for Information Science and Technology, Temple University,

Philadelphia, PA 19122, USA
zoran@ist.temple.edu

Abstract. Labeled data for classification could often be obtained by sampling
that restricts or favors choice of certain classes. A classifier trained using such
data will be biased, resulting in wrong inference and sub-optimal classification
on new data. Given an unlabeled new data set we propose a bootstrap method to
estimate its class probabilities by using an estimate of the classifier's accuracy
on training data and an estimate of probabilities of classifier's predictions on
new data. Then, we propose two methods to improve classification accuracy on
new data. The first method can be applied only if a classifier was designed to
predict posterior class probabilities where predictions of an existing classifier
are adjusted according to the estimated class probabilities of new data. The
second method can be applied to an arbitrary classification algorithm, but it
requires retraining on the properly resampled data. The proposed bootstrap
algorithm was validated through experiments with 500 replicates calculated on
1,000 realizations for each of 16 choices of data set size, number of classes,
prior class probabilities and conditional probabilities describing a classifier’s
performance. Applications of the proposed methodology to a benchmark data
set with various class probabilities on unlabeled data and balanced class
probabilities on the training data provided strong evidence that the proposed
methodology can be successfully used to significantly improve classification on
unlabeled data.

1 Introduction

A common assumption made in machine learning is that labeled data used for training
a classifier and unlabeled new data can be considered as samples from the same
underlying distribution. In such a case one could apply standard machine learning
procedures to learn a classifier from labeled data (e.g., logistic regression, decision
trees, neural networks), estimate its accuracy (e.g., directly from training set, using
cross-validation), and apply it on unlabeled examples in a straightforward manner.
However, this assumption is often violated with labeled and/or unlabeled data
obtained by biased sampling from an underlying distribution. While inference and
learning in such a general setup is an open machine learning problem, in this paper we
propose a methodology for solving an important special case where class distributions
in labeled and/or unlabeled data are biased. To simplify the presentation it will be

assumed that unlabeled data is a sample from an underlying distribution. This
corresponds to the goal of constructing a classifier optimized for successful
predictions on an unlabeled data set.

A familiar example that involves biased class distribution is classification of a rare
medical condition where false negative predictions can have high costs. A common
approach is to intentionally provide a biased training set with a disproportionally large
number of examples from the rare condition in order to produce a successful classifier
with a small fraction of false negative predictions. Another example is the case where
costs of obtaining labeled examples are class-dependent and where the resulting
labeled data set is biased towards examples from less expensive classes.

 An interesting example that motivated this work is the problem of predicting
protein disorder from its amino-acid sequence [11,13]. Protein disorder is a biological
concept that refers to proteins that do not crystallize into a unique 3D structure [7]. To
obtain training set for prediction of protein disorder one should collect representative
examples of ordered and disordered proteins. However, since protein disorder is an
insufficiently explored phenomenon, accurate estimates of its commonness in nature
do not exist. Additionally, current databases of proteins with known structure are
highly biased towards ordered proteins. The explanation is that crystallographers are
reluctant to publish structural results for disordered proteins since there is always a
risk that some procedural error prevented proper protein crystallization. The proposed
methodology could lead to a successful predictor of protein disorder and provide
confident estimates of protein disorder commonness.

The learning problem considered in this paper can be defined as construction of a
classifier using labeled data of size nL with class probabilities PL(i), i = 1, ... c, where
c is the number of classes, for accurate prediction on unlabeled data of size nU with
unknown class probabilities PU(i). This problem can be solved by (step1) estimating
the class distribution PU(i), followed by (step2) using this estimate to construct a
desired classifier. We propose a bootstrap methodology [8] to estimate distribution of
PU(i) based on (step1.a) an estimate of classifier’s accuracy obtained on labeled data,
and (step1.b) an estimate of classifier’s class predictions on unlabeled data.

To construct a successful classifier (step2) we propose two approaches depending
on the type of classification algorithm and available computational resources. If a
classifier was trained to estimate posterior class probabilities (e.g., logistic regression,
neural networks) it is possible to use the existing classifier on an unlabeled data set by
adjusting its outputs according to estimated PU(i). If computational resources allow,
or if a classifier represents a nonlinear discriminant function that directly provides
classification (e.g., decision trees) we propose a procedure for retraining of classifier
using resampled labeled data according to estimated PU(i).

In real-life applications of classification different costs are often associated with
different types of errors. Misclassification costs are usually described by cost matrix
C with elements C(j, i) representing the costs of predicting class j when the true class
is i. Unless explicitly mentioning otherwise, in this paper we assume 0/1 loss, where
C(j, i) = 1 if i ≠ j and C(i, i) = 0, to simplify presentation. However, it is important to
note that the proposed methodology is not restricted to the choice of cost matrix so
that it can be generalized to an arbitrary cost matrix.

2 Estimation of the Class Distribution on an Unlabeled Data Set

Let us assume that a labeled data set SL with nL examples is available to learn a
classifier and to estimate its accuracy, while the constructed classifier should be
applied to a new unlabeled data set SU with nU examples. Classification accuracy is
completely determined by (i) conditional probabilities p(ji) of predicting a class j if
the true class is i, and (ii) prior probabilities pi (shorthand for PU(i)) of class i on SU,
where i, j = {1, ..., c}, and c represents the number of classes. The 0/1 loss or error
rate can then be calculated as

,[%]100)1()|(_ ∑∑ ⋅δ−⋅⋅=
j i

jiipijprateerror (1)

where δij is the Kronecker’s delta with δij = 1 for i = j and zero otherwise.

Calculating Class Probabilities from Very Large Data Sets
Class probabilities pi on SU are not known in advance, so they should be estimated

using an available classifier with known conditional probabilities p(ji). Note that the
only information that could be obtained using the classifier on unlabeled data SU are
its predictions. From these predictions we can estimate the probability of predicting
class j on SU denoted as qj. The connection between pi and qj can be expressed as

,)|(∑=
i

ij pijpq (2)

or as q = P⋅p in the matrix form, where q = {qj}, P = {p(ji)}, p = {pi}. From (2) and
assuming an invertible matrix P, one can easily estimate true class probabilities as

qPp ⋅= −1 . (3)

Equation (3) is correct under assumption that values of qj and p(ji) are known
with certainty. This can occur only if available training and new data sets are very
large. However, for majority of real-life applications, the size of available data sets is
limited and qj and p(ji) can be considered as random variables whose properties
should be estimated first.

A Bootstrap Method for Estimating pi from SL and SU
Statistical inference using SL and SU can lead to the proper estimation of multinomial
distributions qj and p(ji). However, it can be difficult to obtain the distribution of pi
expressed with (3) in a closed form. In this study we are primarily interested in
estimating the expected values of class probabilities pi on SU. Although distributions
of qj and p(ji) alone might be estimated in a straightforward manner, even the
estimation of the expected value of pi could not be done directly. Although P and q
are independent, such an estimation is difficult since E[P−1] ≠ E[P]−1. Therefore, we
use the idea of bootstrap [8], which is a powerful simulation methodology for
statistical inference suitable for estimating the distribution of pi. We first describe the
basic idea of bootstrap.

Given an original sample X with n examples the bootstrap sample X* is obtained by
randomly sampling n examples from X with replacement. Bootstrap algorithm
generates a large number B of bootstrap samples X*1, X*2 ..., X*B and calculates
desired statistics s*b = s(X*b) from each of them. Statistics s(⋅), for example, can
represent the sample mean, but it can be an almost arbitrarily complex function such
as the one expressed by (3). Properties of the statistics s(⋅) such as mean, variance or
confidence intervals can be estimated from B obtained values s*b that are called the
bootstrap replicates of s.

In our problem two independent samples SL and SU are available for separately
estimating qj and p(ji). Given a labeled set SL, one should properly use this set both
for training a classifier and for estimating conditional probabilities p(ji). If nL is
large, the usual practice is to reserve a test set Stest of size ntest for estimating p(ji),
and to train a classifier on the remaining data Strain = SL−Stest. If nL is relatively small,
cross-validation [e.g., 8] is usually employed where, effectively, nL = ntrain = ntest and
all nL examples are used both for training and for estimating p(ji), at the cost of a
larger computational effort needed to learn a number of cross-validation classifiers.
On the other side, all nU examples from SU can be directly used to estimate qj.

In Table 1 we present a bootstrap algorithm for estimating class probabilities pi.
With ntest

*(j, i) we denoted the number of examples in a bootstrap sample Stest
* that are

predicted to be of class j when their true class is i. Similarly, with nU
*(j) we denoted

the number of examples in a bootstrap sample SU
* predicted to be of class j. The idea

of the algorithm is clearly to generate two bootstrap samples, calculate the
corresponding bootstrap replicates of qj and p(ji) and then use equation (3) to
determine bootstrap replicate of pi. Finally, the estimate Epi of class probability pi on
SU can be calculated as Epi = (1/B)Σb pi

*b. According to [8], 100 – 200 bootstrap
iterations are needed if we are interested only in Epi, and 500 – 1000 bootstrap
iterations are needed if we are interested in the two-tailed confidence intervals of pi.

Table 1. A bootstrap algorithm for estimating class probabilities pj in unlabeled data

Given B, Stest, SU and a classifier
b = 0
repeat

Generate a bootstrap sample from ntest examples of Stest and calculate
 ∑=

j testtest ijnijnijp),(),()|(*** for i, j = 1, ..., c.

Generate a bootstrap sample from nU examples of SU and calculate
 UUj njnq)(** = for j = 1, ..., c.
Use (3) to calculate bootstrap replicate pi

*b for i = 1, ..., c.
if all pi

*b are within interval [0, 1]
b = b + 1

end
until b = B

It is important to observe that for small SL and SU some bootstrap samples can result
in infeasible replicates pi

*, but the proposed algorithm discards all such infeasible

replicates. For explanation, let us consider an example of two-class classification
problem with an iteration of the bootstrap algorithm resulting in replicates p*(1|1) =
p*(0|0) = 0.8 and q1

* = 0.9. Clearly, assuming the conditional probabilities are true,
even for the extreme case with all examples from SU being from class 1, q1 could not
be larger then 0.8. As a consequence, applying (3) on a given example would result in
infeasible replicates p1

* = 1.17 and p0
* = −0.17. Therefore, in the algorithm from

Table 1 all such replicates are discarded.

Modifications of the Bootstrap Algorithm from Table 1
We propose two modifications of the algorithm from Table 1 in order to improve its
speed and to obtain better estimates of class probabilities. Obtaining B bootstrap
samples can become computationally expensive if data sets SL and SU are large. For
sufficiently large data sets estimates of qj and p(ji) become very close to their true
values and the algorithm from Table 1 might not be necessary to estimate pi.
However, in practice it is often not clear how large data set is large enough and,
therefore, we use a simple procedure to provide bootstrap replicates qj

* and p*(ji)
computationally fast when SL and SU are large.

Let us assume a sample X contains discrete random variables xi ∈{1, ..., c}, i = 1,
..., n, such that fj represents the fraction of examples with value j. Since vector f with
elements {fj} is a sufficient statistics of X, replicate f* of a bootstrap sample with
elements {fj

} has distribution f ~ Mult(n,f)/n, where Mult denotes multinomial
distribution with E[fj

*]=fj, Var[fj
*]=fj(1−fj)/n. If n is large fj

* can be approximated by a
normal distribution N(fj, fj(1−fj)/n). In Table 2 we describe a procedure for random
generation of f* without the need for bootstrap sampling, where by norm_rnd(µ, σ2)
we denoted a random generator of a normal distribution with mean µ and variance σ2.

Table 2. A fast procedure for estimating frequencies from large bootstrap samples

Given n, f, c. (c is the number of classes)
f1

* = norm_rnd(f1, f1(1−f1)/n)
if c = 2

f2
* = 1 − f1

*
else

for i = 2: c − 1

∑ =
=

c

ij ji fff ,)1(
1
1

** ∑ −

=
−=

i
j jfnn

fi
* = norm_rnd(f, f(1−f)/n*) ⋅ n*/n

end

∑ −

=
−=

1
1

** 1
c
i ic ff

end

For large Stest and SU the algorithm from Table 1 can be modified so that replicates

qj
* and p*(ji) are calculated directly by using the procedure from Table 2 instead of

taking actual bootstrap samples. To perform this one should only calculate from jq̂

SU or from S)|(ˆ ijp test and use these values as the corresponding sufficient statistics
f.

The second modification to the algorithm from Table 1 is using Laplace
corrections [4] to improve bootstrap replicates qj

* and p*(ji) when SL and SU are
small. Let us assume that probability that example of class i occurs in a sample is
small. If the sample size n is also small, there is a considerable probability that the
fraction fi of examples from the rare class in the sample will be zero. In such a case,
all the bootstrap samples will also have zero examples of class i, resulting in fi

* = 0.
As already shown [9], for certain cost matrices this can result in very poor predictions
of classifier’s loss. The idea of Laplace correction is to bias the fractions fi

* towards
uniform distribution. To achieve this, a simple adjustment of frequency fi from the
original sample is performed as

λ+
λ+

=
cn

n
f i
i

(4)

where ni is the number of examples from class i within a sample of size n, and λ is the
Laplace coefficient. Laplace correction with λ = 1 is a very suitable choice that can be
validated in the following way. If ni = 0 it can be assumed that the true frequency fi of
class i is at one standard deviation from zero, i.e., fi = sqrt{fi(1−fi)/n}. From there it
follows that fi = 1/(n+1), which after replacing in (4) results in λ = n/(n−c+1) ≈ 1.
Finally, it should be noted that Laplace correction can be easily incorporated in both
procedures from Table 1 and Table 2.

3 Improving Classification Based on Class Probability Estimates

Once class probabilities on Snew are estimated it should be possible to improve the
initial classifier. We analyze two distinct cases depending on the type of classifier and
on the available computational resources.

Improving a Classifier That Estimates Posterior Class Probabilities
If a classifier was trained to estimate posterior class probabilities p(i| x) when
presented with a new example x, then it can be directly adjusted without the need for
retraining according to estimated class probabilities pi on SU. For example, a neural
network with a hidden layer and c outputs (representing each of the c classes) trained
by minimizing the mean squared error is known to approximate posterior class
probabilities [1]. Denoting class frequencies in training set Strain as fi,train, and
predictions of a classifier as p(i| x), adjusted predictions padjust(i| x) can be calculated
as [1]

∑
=

j trainjj

trainii
adjust fEpjp

fEpip
ip

,

,

)|(

)|(
)|(

x

x
x (5)

If computational resources permit one could try to produce a number of predictions
for any given input x using different bootstrap replicates of pi, i = 1, ..., c and average

the obtained values to the final prediction. However, this approach will not be
considered further in this paper. If an arbitrary cost matrix C is assumed, one can
further modify the existing classifier padjust(i| x) to provide classifications that
minimize the conditional classification risk [6].

Retraining a Classifier According to Estimated Class Probabilities
Retraining a classifier on Sretrain resampled from Strain so that fi,retrain = Epi should lead
to better accuracy on SU regardless of the type of classification algorithm. Moreover,
if a classifier represents a nonlinear discriminant function that directly provides
classification such a retraining might represent the only viable choice to improve the
classification accuracy. Therefore, in Table 3 we describe a simple iterative procedure
for retraining of classifier that starts by training a classifier based on the original class
probabilities from Strain. As seen from the Table 3, in the following iterations Sretrain is
resampled according to bootstrap estimate Epi.

Table 3. A procedure for retraining classifier using estimates of class probabilities Epi

Given Strain = {(xk,yk)}, k = 1, ..., ntrain, yk ∈ {1, ... c} and SU
Assign fi,retrain = fi,train, (fi,train is the frequency of class i in Strain)
repeat

For each k, dk = fi,retrain / fi,train, where i is label of example (xk,yk)
Normalize dk such that Σk dk = 1
Resample ntrain examples Sretrain from Strain according to dk
Train a classifier on Sretrain
Produce bootstrap estimates pi

*b on SU
For each i = 1, …, c, assign fi,retrain = (1/B)Σb pi

*b
until stopping criterion

Termination of the retraining procedure depends on the available computational

resources. In the simplest, just one retraining might be needed to produce a
satisfactory classifier adjusted for prediction on SU. Also, if fi,retrain is very similar to
fi,train, it might be decided that retraining is not necessary. For example, if fi,train is
within certain confidence interval of bootstrap estimate of pi it can be claimed that,
statistically, class probabilities in SL and SU are identical. Finally, if possible, the
procedure should be repeated until convergence of estimated class probabilities is
observed between consecutive iterations.

Few of the many modifications of the proposed procedure that can depend on an
application include:
• If training set Strain is large the size of resampled data can be made smaller than

ntrain to speed-up the retraining without much loss of accuracy [12];
• For neural network classifiers, retaining on Strain and adjusting the weighting cost

function according to estimated class probabilities could lead to a better accuracy
then when resampling Strain [1];

• Using the similar reasoning as in section 2, Laplace correction can be used on
fi,retrain to adjust it towards uniform distribution;

• If computational resources allow, instead of training a single classifier, bagging
[3] can be used to train an ensemble of classifiers to improve both the
classification accuracy and the estimate of class probabilities on SU;

• Some of known methods [2,5] can be coupled with the procedure from Table 3 in
a straightforward manner to produce classifiers that are optimized to an arbitrary
cost matrix.

4 Experimental Results

We performed two groups of experiments to validate the proposed procedures for
improving classifiers trained on data with biased class distribution. In the first group,
we validated bootstrap methodology proposed in Section 2, while in the second group
we applied the proposed methodology to the benchmark Waveform data set [2].

4.1. Validation of the Proposed Bootstrap Algorithm

The proposed bootstrap algorithm was examined across a wide range of possible
scenarios including different choices of data sizes ntest, nU, number of classes c, prior
class probabilities pi,train on Strain and pi on SU, and conditional probabilities p(j| i)
describing classifier’s performance. In our experiments we have first chosen several
sets of parameters {c, λ, ntest, nU} as shown in Table 4. Then, for each such set of
parameters we randomly generated 1000 probabilities pi,train, pi, and p(j| i) to obtain
1000 7-tuples {c, λ, ntest, nU, pi,train, pi, p(j| i)}. To examine a large range of possible
choices we used the following random generators (by rand we denote a uniform
random number from [0,1]): (a) pi,train = ri/Σri, where ri = rand + 0.05; (b) pi = ri/Σri,
where ri = rand + 0.05; and (c) p(j| i) = rji/Σjrji, where rji = rand + δji. The reason for
adding 0.05 in (a) and (b) was to avoid examination of extremely rare classes in
training or in unlabeled data, while adding Kronecker’s delta promoted higher
probabilities at i = j which is behavior expected of any classifier.

In our methodology for bootstrap validation, starting from a given 7-tuple {c, λ,
ntest, nU, pi,train, pi, p(j| i)}, we use {ntest, pi,train, p(j| i)} to randomly generate a
realization , and {n)|(ˆ ijp

)| i jq̂

jq̂

U, pi, p(j| i)} to randomly generate a realization by the
procedure described in Table 2. Therefore, for the each given 7-tuple we generate a
pair { , }. Then, from { , } we generate 500 bootstrap replicates

of and , and apply (3) to calculate 500 bootstrap replicates p

jq̂

(ˆ jp

)|(ij

)|(ˆ ijp jq̂

p̂ i
*. Using 500

replicates pi
* we calculate 90% confidence intervals for bootstrap estimates of pi, and

measure if all actual values pi, i = 1, …, c, belong to the estimated confidence
intervals. If the proposed bootstrap algorithm is well designed, in about 90% of
experiments the true values of pi will belong to the estimated 90% confidence
intervals.

In Table 4, for 16 different sets of parameters {c, λ, ntest, nU}, we report B90 values
showing the fractions of the 1000 90% confidence intervals that contained the true pi
values. As could be seen, B90 values were between 0.83-0.92 in different

experiments, they were slightly larger for λ = 1, and did not depend much on the
choice of data size and the number of classes. Slightly lower B90 means that the
estimated confidence intervals for the proposed bootstrap method are slightly shorter
then their true value, but the difference is small enough to conclude that the evaluated
bootstrap method gives satisfactory estimates. We also report the average number of
bootstrap iterations total_b needed to obtain 500 feasible bootstrap replicates of pi. As
seen, for c = 5 and ntest = 250, the number of infeasible solutions was very large. In
other cases total_b was acceptably small.

Table 4. For each of 16 tuples {c, λ, ntest, nU}, 1000 7-tuples tuples {c, λ, ntest, nU, pi,train, pi,
p(j| i)} were generated and for each of them 500 bootstrap replicates of pi were calculated. The
fraction of the 90% confidence interval that contained the true pi values is denoted as B90.

Classes λ ntest nU total_b B90
100 100 657 0.87
100 1000 603 0.83

1000 100 526 0.84

0

1000 1000 510 0.83
100 100 638 0.89
100 1000 579 0.86

1000 100 527 0.86

2

1

1000 1000 507 0.85
250 250 2240 0.87
250 5000 2110 0.85

5000 250 976 0.84

0

5000 5000 621 0.85
250 250 2210 0.87
250 5000 2070 0.92

5000 250 936 0.87

5

1

5000 5000 612 0.84

4.2. Experiments on Waveform Data Set

As proposed by Breiman [2] we generated waveform data sets with arbitrary number
of examples with 21 continuous attributes from each of the 3 classes, where each class
represents a certain combination of 2 "base" waves chosen from the 3 available
“base” waves. The concept to be learned is highly nonlinear and noisy and its Bayes
error is known to be 13.2% [2] if all 3 classes have the same probability in training
and in test data. The fact that we were able to generate an arbitrary number of
examples allowed us to perform a range of experiments with different data sizes and
different class probabilities.

In the performed experiments we first defined a set of two parameters {ntest, p),
where elements of p, pi, represented the class probabilities on the unlabeled data. We
assumed that the class probabilities on labeled data were the same, pi,train = 1/3. For
simplicity, we also assumed a labeled data set is composed of separate training set
Strain and test set Stest with the same numbers of examples ntest. We could as well

decided to apply a more data-efficient cross-validation approach by using Strain both
for training and test, but the choice of the separate test set allowed us to perform a
larger set of experiments.

Based on the given values {ntest, p} we first generated balanced sets Strain and Stest
with the same number of examples ntest. Then, we generated nU = ntest (again, for
convenience) examples according to class probabilities p. Note that the exact
fractions of classes within SU can be considered as random numbers from Mult(nu,
p)/nu distribution. We also generated another large data set Slarge with 30,000
examples from each of the 3 classes to be able to precisely measure the accuracy of
each constructed classifier.

All combinations {ntest, p} used in our experiments are shown in Table 5. For each
combination {ntest, p} we performed 30 experiments using neural networks with 21
inputs, 5 hidden nodes and 3 sigmoid outputs, trained by resilient backpropagation
algorithm [10] on Strain. Then, we tested neural network performance on Stest to
estimate matrix P with elements p(j| i), and on SU to estimate vector q with elements
qj. Then, we applied the proposed bootstrap method with 200 iterations to estimate
vector p with elements pi.

In Table 5 we report the average bootstrap estimate Epi and +/- one standard
deviation over 30 experiments and, in the parentheses, the average length of 90%
confidence intervals of pi over 30 experiments. We also report on the average
accuracy +/- one standard deviation of the original neural classifier, of the adjusted
neural network using (5), and of the neural network retrained according to estimated
class probabilities of unlabeled data. We were able to use (5) since described neural
networks were trained to approximate posterior class probabilities p(i| x). Note that all
accuracies were measured on Slarge by accounting for the true class probabilities of the
unlabeled data p.

Table 5. Accuracy and class probability estimates over different combinations {ntest, p}

Bootstrap estimates of class
frequencies on unlabeled data [%]

Accuracy
[%]

p

ntest

Class1 Class2 Class3 Original Adjusted Retrain
500 34±3 (12) 33±3 (11) 33±3 (11) 83.2±1.2 83.0±1.2 81.1±0.9

3
1,

3
1,

3
1

 2000 33±2 (6) 34±2 (5) 33±2 (5) 85.1±0.7 85.1±0.7 84.8±0.5

500 49±4 (13) 33±3 (11) 18±3 (10) 82.7±1.6 84.1±1.4 82.4±1.5

6
1,

3
1,

2
1

 2000 49±2 (6) 34±2 (6) 17±2 (5) 84.1±0.8 85.6±0.8 85.5±1.1

500 66±5 (14) 17±3 (11) 17±4 (11) 81.1±2.3 85.0±2.0 83.9±1.8

6
1,

3
1,

3
2

 2000 67±2 (7) 17±3 (5) 17±4 (5) 83.2±1.3 86.7±1.3 87.5±1.0

500 75±4 (15) 17±4 (12) 9±2 (10) 80.0±2.5 87.4±2.0 86.0±1.6
1000 75±3 (10) 17±2 (8) 8±2 (7) 81.5±1.8 88.1±1.2 88.2±1.1
2000 75±2 (7) 17±1 (5) 8±1 (5) 81.3±1.8 88.2±1.4 89.1±1.0

12
1,

6
1,

4
3

5000 75±1 (4) 17±1 (3) 9±1 (3) 82.4±1.7 88.9±1.2 90.0±0.9

As expected, for p = [1/3,1/3,1/3] an original neural network had the highest

accuracy for ntest=500, while for ntest=2000 all 3 strategies gave similar accuracy. For
small data sets the estimates of p can be slightly off which can cause slight decrease
in the accuracy of adjusted classifier. If another classifier is trained on resampled data

using inaccurate estimate of p this difference can be even higher. For other 3
examined vectors p ([1/2,1/3,1/6], [2/3.1/3,1/6], [3/4,1/6,1/12]) adjusted classifiers
and retrained classifiers were clear winners over original classifiers. Also, for large
data sets retrained classifiers were superior to adjusted ones, while adjusted classifiers
were better with smaller samples. Observe also that the classification accuracy was
increasing with the size of the data sets for all 3 scenarios (Original, Adjusted, and
Retrain). Looking at the estimated class probabilities of p expressed as 100pi %, it can
be seen that these estimates were consistent with the true class probability on
unlabeled data, while the confidence intervals of these estimates decreased as the data
size increased.

5 Conclusions

If class distribution on labeled data is different from that of unlabeled data, a classifier
trained on labeled data can cause wrong inference and produce sub-optimal
classification on unlabeled data. In this paper we proposed a bootstrap algorithm to
estimate class probabilities of unlabeled data and used these estimates to improve
classification on unlabeled data. It was shown experimentally that this approach can
be successfully applied to improve classifiers trained on data with biased class
distribution. It is worth noting that the proposed bootstrap methodology alone could
be very useful in estimating the confidence intervals for class probabilities in
important real-life problems such as determining the commonness of protein disorder
in nature.

Although bootstraping is known as a computer intensive methodology, it is
computationally fairly cheap in the framework of classification. The proposed
algorithm uses an existing classifier and the estimate of its accuracy that should both
be products of a standard process of classifier construction. The proposed bootstrap
algorithm requires only an additional pass through unlabeled data to estimate the
probability of predicting each of the classes. Based on these estimates, the bootstrap
estimation of the true class probabilities on unlabeled data could be done in seconds
regardless of the sizes of labeled and unlabeled data. Even when retraining a classifier
to improve the prediction accuracy, the overall computational effort is just twice more
costly as compared to training a single classifier.

However, it should be remembered that the proposed methodology is applicable
only to the sampling bias in class distribution. Therefore, some theoretical or
empirical evidence about sampling bias in labeled and unlabeled data should validate
the methodology application. The goal of our work in progress is to derive statistical
tests that could determine: (i) if class distribution is biased, and (ii) if there are other
types of sampling bias in data. If such tests were derived, the proposed methodology
could become a standard off-the-shelf procedure for machine learning and knowledge
discovery.

References

1. Bishop, C.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford (1995)
2. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. The

Wadsworth International Group (1984)
3. Breiman, L.: Bagging predictors. Machine Learning. 24 (1996) 123-140
4. Cestnik, B.: Estimating Probabilities: A Crucial Task in Machine Learning. Proceedings of

the 9th ECAI. Stockholm, Sweden (1990) 147-149
5. Domingos, P.: MetaCost: A General Method for Making Classifiers Cost-Sensitive.

Proceedings of the 5th International Conference on Knowledge Discovery and Data
Mining. San Diego, ACM Press (1999) 155-164

6. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley & Sons,
New York, US (1973)

7. Dunker A.K., Lawson J.D., Brown C.J., Romero P., Oh J.,Oldfield C.J., Campen A.M.,
Ratlif, Hipps K.W., Ausio J., Nissen M.S., Reeves R., Kang C.H., Kissinger C.R., Bailey
R.W., Griswold M.D., Chiu W., Garner E.C. and Obradovic Z.: Intrinsically Disordered
Proteins. Journal of Molecular Graphics and Modeling, 19 (2001) 28-61

8. Efron, B., and Tibshirani, R. J.: An Introduction to the Bootstrap. New York: Chapman &
Hall (1993)

9. Margineantu, D.D., Dietterich, T.G.: Bootstrap Methods for the Cost-Sensitive Evaluation
of Classifiers. Proceedings of the 17th International Conference on Machine Learning,
(2000) 582-590

10. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning:
the RPROP algorithm. Proceedings of the IEEE International Conference on Neural
Networks. (1993) 586-591

11. Romero, P., Obradovic, Z., Li, X., Garner, E., Brown, C.J., Dunker, A.K.: Sequence
Complexity and Disordered Protein. Proteins: Structure, Function and Genetics. 42 (2001)
38-48

12. Vucetic, S., Obradovic, Z.: Performance Controlled Data Reduction for Knowledge
Discovery in Distributed Databases. Proceedings of the 4th Pacific-Asia Conference on
Knowledge Discovery and Data Mining. Computer Science Editorial 3, Springer-Verlag,
Kyoto, Japan (2000) 29-39

13. Vucetic, S., Radivojac, P., Dunker, K., Brown, C., Obradovic, Z.: Methods for Improving
Protein Disorder Prediction. Proceedings of the IEEE/INNS International Conference on
Neural Networks. Washington D.C. (2001, in press)

