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Abstract. Labeled data for classification could often be obtained by sampling 
that restricts or favors choice of certain classes. A classifier trained using such 
data will be biased, resulting in wrong inference and sub-optimal classification 
on new data. Given an unlabeled new data set we propose a bootstrap method to 
estimate its class probabilities by using an estimate of the classifier's accuracy 
on training data and an estimate of probabilities of classifier's predictions on 
new data. Then, we propose two methods to improve classification accuracy on 
new data. The first method can be applied only if a classifier was designed to 
predict posterior class probabilities where predictions of an existing classifier 
are adjusted according to the estimated class probabilities of new data. The 
second method can be applied to an arbitrary classification algorithm, but it 
requires retraining on the properly resampled data. The proposed bootstrap 
algorithm was validated through experiments with 500 replicates calculated on 
1,000 realizations for each of 16 choices of data set size, number of classes, 
prior class probabilities and conditional probabilities describing a classifier’s 
performance. Applications of the proposed methodology to a benchmark data 
set with various class probabilities on unlabeled data and balanced class 
probabilities on the training data provided strong evidence that the proposed 
methodology can be successfully used to significantly improve classification on 
unlabeled data. 

1   Introduction 

A common assumption made in machine learning is that labeled data used for training 
a classifier and unlabeled new data can be considered as samples from the same 
underlying distribution. In such a case one could apply standard machine learning 
procedures to learn a classifier from labeled data (e.g., logistic regression, decision 
trees, neural networks), estimate its accuracy (e.g., directly from training set, using 
cross-validation), and apply it on unlabeled examples in a straightforward manner. 
However, this assumption is often violated with labeled and/or unlabeled data 
obtained by biased sampling from an underlying distribution. While inference and 
learning in such a general setup is an open machine learning problem, in this paper we 
propose a methodology for solving an important special case where class distributions 
in labeled and/or unlabeled data are biased. To simplify the presentation it will be 



assumed that unlabeled data is a sample from an underlying distribution. This 
corresponds to the goal of constructing a classifier optimized for successful 
predictions on an unlabeled data set.  

A familiar example that involves biased class distribution is classification of a rare 
medical condition where false negative predictions can have high costs. A common 
approach is to intentionally provide a biased training set with a disproportionally large 
number of examples from the rare condition in order to produce a successful classifier 
with a small fraction of false negative predictions. Another example is the case where 
costs of obtaining labeled examples are class-dependent and where the resulting 
labeled data set is biased towards examples from less expensive classes. 

 An interesting example that motivated this work is the problem of predicting 
protein disorder from its amino-acid sequence [11,13]. Protein disorder is a biological 
concept that refers to proteins that do not crystallize into a unique 3D structure [7]. To 
obtain training set for prediction of protein disorder one should collect representative 
examples of ordered and disordered proteins. However, since protein disorder is an 
insufficiently explored phenomenon, accurate estimates of its commonness in nature 
do not exist. Additionally, current databases of proteins with known structure are 
highly biased towards ordered proteins. The explanation is that crystallographers are 
reluctant to publish structural results for disordered proteins since there is always a 
risk that some procedural error prevented proper protein crystallization. The proposed 
methodology could lead to a successful predictor of protein disorder and provide 
confident estimates of protein disorder commonness. 

The learning problem considered in this paper can be defined as construction of a 
classifier using labeled data of size nL with class probabilities PL(i), i = 1, ... c, where 
c is the number of classes, for accurate prediction on unlabeled data of size nU with 
unknown class probabilities PU(i). This problem can be solved by (step1) estimating 
the class distribution PU(i), followed by (step2) using this estimate to construct a 
desired classifier. We propose a bootstrap methodology [8] to estimate distribution of 
PU(i) based on (step1.a) an estimate of classifier’s accuracy obtained on labeled data, 
and (step1.b) an estimate of classifier’s class predictions on unlabeled data. 

To construct a successful classifier (step2) we propose two approaches depending 
on the type of classification algorithm and available computational resources. If a 
classifier was trained to estimate posterior class probabilities (e.g., logistic regression, 
neural networks) it is possible to use the existing classifier on an unlabeled data set by 
adjusting its outputs according to estimated PU(i). If computational resources allow, 
or if a classifier represents a nonlinear discriminant function that directly provides 
classification (e.g., decision trees) we propose a procedure for retraining of classifier 
using resampled labeled data according to estimated PU(i). 

In real-life applications of classification different costs are often associated with 
different types of errors. Misclassification costs are usually described by cost matrix 
C with elements C(j, i) representing the costs of predicting class j when the true class 
is i. Unless explicitly mentioning otherwise, in this paper we assume 0/1 loss, where 
C(j, i) = 1 if i ≠ j and C(i, i) = 0, to simplify presentation. However, it is important to 
note that the proposed methodology is not restricted to the choice of cost matrix so 
that it can be generalized to an arbitrary cost matrix. 



2 Estimation of the Class Distribution on an Unlabeled Data Set 

Let us assume that a labeled data set SL with nL examples is available to learn a 
classifier and to estimate its accuracy, while the constructed classifier should be 
applied to a new unlabeled data set SU with nU examples. Classification accuracy is 
completely determined by (i) conditional probabilities p(ji) of predicting a class j if 
the true class is i, and (ii) prior probabilities pi (shorthand for PU(i)) of class i on SU, 
where i, j = {1, ..., c}, and c represents the number of classes. The 0/1 loss or error 
rate can then be calculated as 
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where δij is the Kronecker’s delta with δij = 1 for i = j and zero otherwise.  

Calculating Class Probabilities from Very Large Data Sets 
Class probabilities pi on SU are not known in advance, so they should be estimated 

using an available classifier with known conditional probabilities p(ji). Note that the 
only information that could be obtained using the classifier on unlabeled data SU are 
its predictions. From these predictions we can estimate the probability of predicting 
class j on SU denoted as qj. The connection between pi and qj can be expressed as 
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or as q = P⋅p in the matrix form, where q = {qj}, P = {p(ji)}, p = {pi}. From (2) and 
assuming an invertible matrix P, one can easily estimate true class probabilities as  

qPp ⋅= −1 . (3) 

Equation (3) is correct under assumption that values of qj and p(ji) are known 
with certainty. This can occur only if available training and new data sets are very 
large. However, for majority of real-life applications, the size of available data sets is 
limited and qj and p(ji) can be considered as random variables whose properties 
should be estimated first. 

A Bootstrap Method for Estimating pi from SL and SU  
Statistical inference using SL and SU can lead to the proper estimation of multinomial 
distributions qj and p(ji). However, it can be difficult to obtain the distribution of pi 
expressed with (3) in a closed form. In this study we are primarily interested in 
estimating the expected values of class probabilities pi on SU. Although distributions 
of qj and p(ji) alone might be estimated in a straightforward manner, even the 
estimation of the expected value of pi could not be done directly. Although P and q 
are independent, such an estimation is difficult since E[P−1] ≠ E[P]−1. Therefore, we 
use the idea of bootstrap [8], which is a powerful simulation methodology for 
statistical inference suitable for estimating the distribution of pi. We first describe the 
basic idea of bootstrap. 



Given an original sample X with n examples the bootstrap sample X* is obtained by 
randomly sampling n examples from X with replacement. Bootstrap algorithm 
generates a large number B of bootstrap samples X*1, X*2 ..., X*B and calculates 
desired statistics s*b = s(X*b) from each of them. Statistics s(⋅), for example, can 
represent the sample mean, but it can be an almost arbitrarily complex function such 
as the one expressed by (3). Properties of the statistics s(⋅) such as mean, variance or 
confidence intervals can be estimated from B obtained values s*b that are called the 
bootstrap replicates of s. 

In our problem two independent samples SL and SU are available for separately 
estimating qj and p(ji). Given a labeled set SL, one should properly use this set both 
for training a classifier and for estimating conditional probabilities p(ji). If nL is 
large, the usual practice is to reserve a test set Stest of size ntest for estimating p(ji), 
and to train a classifier on the remaining data Strain = SL−Stest. If nL is relatively small, 
cross-validation [e.g., 8] is usually employed where, effectively, nL = ntrain = ntest and 
all nL examples are used both for training and for estimating p(ji), at the cost of a 
larger computational effort needed to learn a number of cross-validation classifiers. 
On the other side, all nU examples from SU can be directly used to estimate qj. 

In Table 1 we present a bootstrap algorithm for estimating class probabilities pi. 
With ntest

*(j, i) we denoted the number of examples in a bootstrap sample Stest
* that are 

predicted to be of class j when their true class is i. Similarly, with nU
*(j) we denoted 

the number of examples in a bootstrap sample SU
* predicted to be of class j. The idea 

of the algorithm is clearly to generate two bootstrap samples, calculate the 
corresponding bootstrap replicates of qj and p(ji) and then use equation (3) to 
determine bootstrap replicate of pi. Finally, the estimate Epi of class probability pi on 
SU can be calculated as Epi = (1/B)Σb pi

*b. According to [8], 100 – 200 bootstrap 
iterations are needed if we are interested only in Epi, and 500 – 1000 bootstrap 
iterations are needed if we are interested in the two-tailed confidence intervals of pi. 

Table 1. A bootstrap algorithm for estimating class probabilities pj in unlabeled data 

Given B, Stest, SU and a classifier 
b = 0 
repeat 

Generate a bootstrap sample from ntest examples of Stest and calculate 
  ∑=

j testtest ijnijnijp ),(),()|( ***  for i, j = 1, ..., c. 

Generate a bootstrap sample from nU examples of SU and calculate 
  UUj njnq )(** =  for j = 1, ..., c. 
Use (3) to calculate bootstrap replicate pi

*b for i = 1, ..., c. 
if all pi

*b are within interval [0, 1] 
b = b + 1 

end 
until b = B 

 
It is important to observe that for small SL and SU some bootstrap samples can result 
in infeasible replicates pi

*, but the proposed algorithm discards all such infeasible 



replicates. For explanation, let us consider an example of two-class classification 
problem with an iteration of the bootstrap algorithm resulting in replicates p*(1|1) = 
p*(0|0) = 0.8 and q1

* = 0.9. Clearly, assuming the conditional probabilities are true, 
even for the extreme case with all examples from SU being from class 1, q1 could not 
be larger then 0.8. As a consequence, applying (3) on a given example would result in 
infeasible replicates p1

* = 1.17 and p0
* = −0.17. Therefore, in the algorithm from 

Table 1 all such replicates are discarded. 

Modifications of the Bootstrap Algorithm from Table 1 
We propose two modifications of the algorithm from Table 1 in order to improve its 
speed and to obtain better estimates of class probabilities. Obtaining B bootstrap 
samples can become computationally expensive if data sets SL and SU are large. For 
sufficiently large data sets estimates of qj and p(ji) become very close to their true 
values and the algorithm from Table 1 might not be necessary to estimate pi. 
However, in practice it is often not clear how large data set is large enough and, 
therefore, we use a simple procedure to provide bootstrap replicates qj

* and p*(ji) 
computationally fast when SL and SU are large.  

Let us assume a sample X contains discrete random variables xi ∈{1, ..., c}, i = 1, 
..., n, such that  fj represents the fraction of examples with value j. Since vector f with 
elements {fj} is a sufficient statistics of X, replicate f* of a bootstrap sample with 
elements {fj

*} has distribution f* ~ Mult(n,f)/n, where Mult denotes multinomial 
distribution with E[fj

*]=fj, Var[fj
*]=fj(1−fj)/n. If n is large fj

* can be approximated by a 
normal distribution N(fj, fj(1−fj)/n). In Table 2 we describe a procedure for random 
generation of f* without the need for bootstrap sampling, where by norm_rnd(µ, σ2) 
we denoted a random generator of a normal distribution with mean µ and variance σ2. 

Table 2. A fast procedure for estimating frequencies from large bootstrap samples 

Given n, f, c. (c is the number of classes) 
f1

* = norm_rnd(f1,  f1(1−f1)/n) 
if c = 2  

f2
* = 1 − f1

* 
else 

for i = 2: c − 1 

∑ =
=

c

ij ji fff ,  )1(
1
1

** ∑ −

=
−=

i
j jfnn

fi
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end 
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end 
 
For large Stest and SU the algorithm from Table 1 can be modified so that replicates 

qj
* and p*(ji) are calculated directly by using the procedure from Table 2 instead of 

taking actual bootstrap samples. To perform this one should only calculate from jq̂



SU or  from S)|(ˆ ijp test and use these values as the corresponding sufficient statistics 
f. 

The second modification to the algorithm from Table 1 is using Laplace 
corrections [4] to improve bootstrap replicates qj

* and p*(ji) when SL and SU are 
small. Let us assume that probability that example of class i occurs in a sample is 
small. If the sample size n is also small, there is a considerable probability that the 
fraction fi of examples from the rare class in the sample will be zero. In such a case, 
all the bootstrap samples will also have zero examples of class i, resulting in fi

* = 0. 
As already shown [9], for certain cost matrices this can result in very poor predictions 
of classifier’s loss. The idea of Laplace correction is to bias the fractions fi

* towards 
uniform distribution. To achieve this, a simple adjustment of frequency fi from the 
original sample is performed as 

λ+
λ+

=
cn

n
f i
i  

(4) 

where ni is the number of examples from class i within a sample of size n, and λ is the 
Laplace coefficient. Laplace correction with λ = 1 is a very suitable choice that can be 
validated in the following way. If ni = 0 it can be assumed that the true frequency fi of 
class i is at one standard deviation from zero, i.e., fi = sqrt{fi(1−fi)/n}. From there it 
follows that fi = 1/(n+1), which after replacing in (4) results in λ = n/(n−c+1) ≈ 1. 
Finally, it should be noted that Laplace correction can be easily incorporated in both 
procedures from Table 1 and Table 2. 

3 Improving Classification Based on Class Probability Estimates 

Once class probabilities on Snew are estimated it should be possible to improve the 
initial classifier. We analyze two distinct cases depending on the type of classifier and 
on the available computational resources. 

Improving a Classifier That Estimates Posterior Class Probabilities 
If a classifier was trained to estimate posterior class probabilities p(i| x) when 
presented with a new example x, then it can be directly adjusted without the need for 
retraining according to estimated class probabilities pi on SU. For example, a neural 
network with a hidden layer and c outputs (representing each of the c classes) trained 
by minimizing the mean squared error is known to approximate posterior class 
probabilities [1]. Denoting class frequencies in training set Strain as fi,train, and 
predictions of a classifier as p(i| x), adjusted predictions padjust(i| x) can be calculated 
as [1]  
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If computational resources permit one could try to produce a number of predictions 
for any given input x using different bootstrap replicates of pi, i = 1, ..., c and average 



the obtained values to the final prediction. However, this approach will not be 
considered further in this paper. If an arbitrary cost matrix C is assumed, one can 
further modify the existing classifier padjust(i| x) to provide classifications that 
minimize the conditional classification risk [6].  

Retraining a Classifier According to Estimated Class Probabilities 
Retraining a classifier on Sretrain resampled from Strain so that fi,retrain = Epi should lead 
to better accuracy on SU regardless of the type of classification algorithm. Moreover, 
if a classifier represents a nonlinear discriminant function that directly provides 
classification such a retraining might represent the only viable choice to improve the 
classification accuracy. Therefore, in Table 3 we describe a simple iterative procedure 
for retraining of classifier that starts by training a classifier based on the original class 
probabilities from Strain. As seen from the Table 3, in the following iterations Sretrain is 
resampled according to bootstrap estimate Epi. 

Table 3. A procedure for retraining classifier using estimates of class probabilities Epi 

Given Strain = {(xk,yk)}, k = 1, ..., ntrain, yk ∈ {1, ... c} and SU 
Assign fi,retrain = fi,train, (fi,train is the frequency of class i in Strain) 
repeat 

For each k, dk = fi,retrain / fi,train, where i is  label of example (xk,yk) 
Normalize dk such that Σk dk = 1 
Resample ntrain examples Sretrain from Strain according to dk  
Train a classifier on Sretrain 
Produce bootstrap estimates pi

*b on SU 
For each i = 1, …, c, assign fi,retrain = (1/B)Σb pi

*b 
until stopping criterion 

 
Termination of the retraining procedure depends on the available computational 

resources. In the simplest, just one retraining might be needed to produce a 
satisfactory classifier adjusted for prediction on SU. Also, if fi,retrain is very similar to 
fi,train, it might be decided that retraining is not necessary. For example, if fi,train is 
within certain confidence interval of bootstrap estimate of pi it can be claimed that, 
statistically, class probabilities in SL and SU are identical. Finally, if possible, the 
procedure should be repeated until convergence of estimated class probabilities is 
observed between consecutive iterations. 

Few of the many modifications of the proposed procedure that can depend on an 
application include: 
• If training set Strain is large the size of resampled data can be made smaller than 

ntrain to speed-up the retraining without much loss of accuracy [12]; 
• For neural network classifiers, retaining on Strain and adjusting the weighting cost 

function according to estimated class probabilities could lead to a better accuracy 
then when resampling Strain [1]; 

• Using the similar reasoning as in section 2, Laplace correction can be used on 
fi,retrain to adjust it towards uniform distribution; 



• If computational resources allow, instead of training a single classifier, bagging 
[3] can be used to train an ensemble of classifiers to improve both the 
classification accuracy and the estimate of class probabilities on SU;  

• Some of known methods [2,5] can be coupled with the procedure from Table 3 in 
a straightforward manner to produce classifiers that are optimized to an arbitrary 
cost matrix.  

4 Experimental Results 

We performed two groups of experiments to validate the proposed procedures for 
improving classifiers trained on data with biased class distribution. In the first group, 
we validated bootstrap methodology proposed in Section 2, while in the second group 
we applied the proposed methodology to the benchmark Waveform data set [2]. 

4.1. Validation of the Proposed Bootstrap Algorithm 

The proposed bootstrap algorithm was examined across a wide range of possible 
scenarios including different choices of data sizes ntest, nU, number of classes c, prior 
class probabilities pi,train on Strain and pi on SU, and conditional probabilities p(j| i) 
describing classifier’s performance. In our experiments we have first chosen several 
sets of parameters {c, λ, ntest, nU} as shown in Table 4. Then, for each such set of 
parameters we randomly generated 1000 probabilities pi,train, pi, and p(j| i) to obtain 
1000 7-tuples {c, λ, ntest, nU, pi,train, pi, p(j| i)}. To examine a large range of possible 
choices we used the following random generators (by rand we denote a uniform 
random number from [0,1]): (a) pi,train = ri/Σri, where ri = rand + 0.05; (b) pi = ri/Σri, 
where ri = rand + 0.05; and (c) p(j| i) = rji/Σjrji, where rji = rand + δji. The reason for 
adding 0.05 in (a) and (b) was to avoid examination of extremely rare classes in 
training or in unlabeled data, while adding Kronecker’s delta promoted higher 
probabilities at i = j which is behavior expected of any classifier. 

In our methodology for bootstrap validation, starting from a given 7-tuple {c, λ, 
ntest, nU, pi,train, pi, p(j| i)}, we use  {ntest, pi,train, p(j| i)} to randomly generate a 
realization , and {n)|(ˆ ijp

)| i jq̂

jq̂

U, pi, p(j| i)} to randomly generate a realization  by the 
procedure described in Table 2. Therefore, for the each given 7-tuple we generate a 
pair { , }. Then, from { , } we generate 500 bootstrap replicates 

of  and , and apply (3) to calculate 500 bootstrap replicates p

jq̂

(ˆ jp

)|( ij

)|(ˆ ijp jq̂

p̂ i
*. Using 500 

replicates pi
* we calculate 90% confidence intervals for bootstrap estimates of pi, and 

measure if all actual values pi, i = 1, …, c, belong to the estimated confidence 
intervals. If the proposed bootstrap algorithm is well designed, in about 90% of 
experiments the true values of pi will belong to the estimated 90% confidence 
intervals. 

In Table 4, for 16 different sets of parameters {c, λ, ntest, nU}, we report B90 values 
showing the fractions of the 1000 90% confidence intervals that contained the true pi 
values. As could be seen, B90 values were between 0.83-0.92 in different 



experiments, they were slightly larger for λ = 1, and did not depend much on the 
choice of data size and the number of classes. Slightly lower B90 means that the 
estimated confidence intervals for the proposed bootstrap method are slightly shorter 
then their true value, but the difference is small enough to conclude that the evaluated 
bootstrap method gives satisfactory estimates. We also report the average number of 
bootstrap iterations total_b needed to obtain 500 feasible bootstrap replicates of pi. As 
seen, for c = 5 and ntest = 250, the number of infeasible solutions was very large. In 
other cases total_b was acceptably small. 

Table 4. For each of 16 tuples {c, λ, ntest, nU}, 1000 7-tuples tuples {c, λ, ntest, nU, pi,train, pi, 
p(j| i)} were generated and for each of them 500 bootstrap replicates of pi were calculated. The 
fraction of the 90% confidence interval that contained the true pi values is denoted as B90. 

Classes λ ntest nU total_b B90 
100 100 657 0.87 
100 1000 603 0.83 

1000 100 526 0.84 

 
0 

1000 1000 510 0.83 
100 100 638 0.89 
100 1000 579 0.86 

1000 100 527 0.86 

 
 
 

2 
 

1 

1000 1000 507 0.85 
250 250 2240 0.87 
250 5000 2110 0.85 

5000 250 976 0.84 

 
0 

5000 5000 621 0.85 
250 250 2210 0.87 
250 5000 2070 0.92 

5000 250 936 0.87 

 
 
 

5 
 

1 

5000 5000 612 0.84 

4.2. Experiments on Waveform Data Set  

As proposed by Breiman [2] we generated waveform data sets with arbitrary number 
of examples with 21 continuous attributes from each of the 3 classes, where each class 
represents a certain combination of 2 "base" waves chosen from the 3 available 
“base” waves. The concept to be learned is highly nonlinear and noisy and its Bayes 
error is known to be 13.2% [2] if all 3 classes have the same probability in training 
and in test data. The fact that we were able to generate an arbitrary number of 
examples allowed us to perform a range of experiments with different data sizes and 
different class probabilities. 

In the performed experiments we first defined a set of two parameters {ntest, p), 
where elements of p, pi, represented the class probabilities on the unlabeled data. We 
assumed that the class probabilities on labeled data were the same, pi,train = 1/3. For 
simplicity, we also assumed a labeled data set is composed of separate training set 
Strain and test set Stest with the same numbers of examples ntest. We could as well 



decided to apply a more data-efficient cross-validation approach by using Strain both 
for training and test, but the choice of the separate test set allowed us to perform a 
larger set of experiments.  

Based on the given values {ntest, p} we first generated balanced sets Strain and Stest 
with the same number of examples ntest. Then, we generated nU = ntest (again, for 
convenience) examples according to class probabilities p. Note that the exact 
fractions of classes within SU can be considered as random numbers from Mult(nu, 
p)/nu distribution. We also generated another large data set Slarge with 30,000 
examples from each of the 3 classes to be able to precisely measure the accuracy of 
each constructed classifier.  

All combinations {ntest, p} used in our experiments are shown in Table 5. For each 
combination {ntest, p} we performed 30 experiments using neural networks with 21 
inputs, 5 hidden nodes and 3 sigmoid outputs, trained by resilient backpropagation 
algorithm [10] on Strain. Then, we tested neural network performance on Stest to 
estimate matrix P with elements p(j| i), and on SU to estimate vector q with elements 
qj. Then, we applied the proposed bootstrap method with 200 iterations to estimate 
vector p with elements pi. 

In Table 5 we report the average bootstrap estimate Epi and +/- one standard 
deviation over 30 experiments and, in the parentheses, the average length of 90% 
confidence intervals of pi over 30 experiments. We also report on the average 
accuracy +/- one standard deviation of the original neural classifier, of the adjusted 
neural network using (5), and of the neural network retrained according to estimated 
class probabilities of unlabeled data.  We were able to use (5) since described neural 
networks were trained to approximate posterior class probabilities p(i| x). Note that all 
accuracies were measured on Slarge by accounting for the true class probabilities of the 
unlabeled data p.  

Table 5. Accuracy and class probability estimates over different combinations {ntest, p} 

Bootstrap estimates of class 
frequencies on unlabeled data [%] 

Accuracy 
[%] 

 
p 

 
ntest 

Class1 Class2 Class3 Original Adjusted Retrain 
500 34±3 (12) 33±3 (11) 33±3 (11) 83.2±1.2 83.0±1.2 81.1±0.9 

3
1,

3
1,

3
1

 2000 33±2 (6) 34±2 (5) 33±2 (5) 85.1±0.7 85.1±0.7 84.8±0.5 

500 49±4 (13) 33±3 (11) 18±3 (10) 82.7±1.6 84.1±1.4 82.4±1.5 

6
1,

3
1,

2
1

 2000 49±2 (6) 34±2 (6) 17±2 (5) 84.1±0.8 85.6±0.8 85.5±1.1 

500 66±5 (14) 17±3 (11) 17±4 (11) 81.1±2.3 85.0±2.0 83.9±1.8 

6
1,

3
1,

3
2

 2000 67±2 (7) 17±3 (5) 17±4 (5) 83.2±1.3 86.7±1.3 87.5±1.0 

500 75±4 (15) 17±4 (12) 9±2 (10) 80.0±2.5 87.4±2.0 86.0±1.6 
1000 75±3 (10) 17±2 (8) 8±2 (7) 81.5±1.8 88.1±1.2 88.2±1.1 
2000 75±2 (7) 17±1 (5) 8±1 (5) 81.3±1.8 88.2±1.4 89.1±1.0 

 

12
1,

6
1,

4
3

 

5000 75±1 (4) 17±1 (3) 9±1 (3) 82.4±1.7 88.9±1.2 90.0±0.9 
 
As expected, for p = [1/3,1/3,1/3] an original neural network had the highest 

accuracy for ntest=500, while for ntest=2000 all 3 strategies gave similar accuracy. For 
small data sets the estimates of p can be slightly off which can cause slight decrease 
in the accuracy of adjusted classifier. If another classifier is trained on resampled data 



using inaccurate estimate of p this difference can be even higher. For other 3 
examined vectors p ([1/2,1/3,1/6], [2/3.1/3,1/6], [3/4,1/6,1/12]) adjusted classifiers 
and retrained classifiers were clear winners over original classifiers. Also, for large 
data sets retrained classifiers were superior to adjusted ones, while adjusted classifiers 
were better with smaller samples. Observe also that the classification accuracy was 
increasing with the size of the data sets for all 3 scenarios (Original, Adjusted, and 
Retrain). Looking at the estimated class probabilities of p expressed as 100pi %, it can 
be seen that these estimates were consistent with the true class probability on 
unlabeled data, while the confidence intervals of these estimates decreased as the data 
size increased. 

5 Conclusions 

If class distribution on labeled data is different from that of unlabeled data, a classifier 
trained on labeled data can cause wrong inference and produce sub-optimal 
classification on unlabeled data. In this paper we proposed a bootstrap algorithm to 
estimate class probabilities of unlabeled data and used these estimates to improve 
classification on unlabeled data. It was shown experimentally that this approach can 
be successfully applied to improve classifiers trained on data with biased class 
distribution. It is worth noting that the proposed bootstrap methodology alone could 
be very useful in estimating the confidence intervals for class probabilities in 
important real-life problems such as determining the commonness of protein disorder 
in nature. 

Although bootstraping is known as a computer intensive methodology, it is 
computationally fairly cheap in the framework of classification. The proposed 
algorithm uses an existing classifier and the estimate of its accuracy that should both 
be products of a standard process of classifier construction. The proposed bootstrap 
algorithm requires only an additional pass through unlabeled data to estimate the 
probability of predicting each of the classes. Based on these estimates, the bootstrap 
estimation of the true class probabilities on unlabeled data could be done in seconds 
regardless of the sizes of labeled and unlabeled data. Even when retraining a classifier 
to improve the prediction accuracy, the overall computational effort is just twice more 
costly as compared to training a single classifier.  

However, it should be remembered that the proposed methodology is applicable 
only to the sampling bias in class distribution. Therefore, some theoretical or 
empirical evidence about sampling bias in labeled and unlabeled data should validate 
the methodology application. The goal of our work in progress is to derive statistical 
tests that could determine: (i) if class distribution is biased, and (ii) if there are other 
types of sampling bias in data. If such tests were derived, the proposed methodology 
could become a standard off-the-shelf procedure for machine learning and knowledge 
discovery. 
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