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Abstract. In this study we propose an algorithm for the 
prediction of an infection risk that is based on the 
aggregation of locations and their use as prediction 
attributes. Our algorithm is tested on a specific instance 
of EpiSims simulated data for Portland, OR. The 
results indicate that location aggregation is very 
promising approach that can result in high prediction 
accuracy and could be helpful in modeling of 
epidemics.  
 

1. Introduction 

Despite numerous advances in medicine, the risks 
associated with occurrences of well-known, mutated, 
or new pandemic diseases, such as H5N1 avian 
influenza in Southeast Asia [1], are among the largest 
threats facing world health. Traditionally, key 
pandemic response elements have included: (i) 
surveillance, investigation, and protective health 
measures, (ii) viral and anti-viral drugs, (iii) health care 
and emergency response [1]. Several of these response 
actions directly motivate research and developments in 
data mining.  

An open question is how modern data collection 
techniques and data mining could be integrated to 
better understand the spread of a new infection. The 
recently developed EpiSims [2] simulation tool 
provides an excellent environment for the development 
and testing of various data mining techniques for 
pandemic response. Recently, the EpiSims [3] team has 
published simulated data corresponding to a particular 
instance of infection outbreak in Portland, OR. The 
data consists of 5 data tables with detailed information 
for about 1.6 million people and 240 thousand 
locations in Portland, including people’s movement, 
activities, social contacts, and the infection spread.  

While highly detailed simulated data are useful for 
understanding the properties of various infections, we 
also need to consider the type and availability of 
information real life situations would provide and how 
such information might be used in response to an 
outbreak. This problem is the primary motivation for 
our study. Our assumption was that, using the current 
technology while considering privacy issues, it would 
be possible to collect very valuable information for 

disease response. For example, by using cell phone 
records, it would be possible to track human movement 
quite accurately. In addition, by performing appropriate 
surveys, information about the type of activities 
occurring at every location could be obtained. Using 
this information, our hypothesis is that data mining can 
be very useful when predicting those people most at 
risk, shortly upon the outbreak of an infection. 
Additionally, by analyzing the developed predictor, it 
could be possible to gain better understanding of the 
epidemics and use the results to improve quality of 
epidemics modeling [4]. 

The goal of our study is to explore the ways in which 
the risks of infection could be predicted using human 
movement and location-specific activity data. To 
constrain the scope of our study, we concentrate on 
diseases that are transmitted only through human 
contact.  In such cases, close proximity among people 
is a necessary condition for infections to spread. Our 
approach is based on an assumption that that the type 
of location is an important determinant of infection 
risk. For example, people who are congregated in a 
large public area are at a lesser risk of infection than 
those who are in closer physical contact with an 
infected person. The proposed approach is based on the 
aggregation of locations into specific types and their 
uses as prediction attributes. In this paper, we propose 
to aggregate locations based on the nature of the 
ongoing activities.  
 

2. Data Sets and Data Preprocessing 

2.1. Data Sets 

The original data [3] consists of five data tables that are 
the result of one simulation by the EpiSims model: 

People (PortlandProtoPopulation). This table consists 
of basic information about 1.6 million inhabitants of 
Portland. 
Locations (PortlandProtoLocations). Contains spatial 
coordinates of about 240 thousand locations in 
Portland. 
Activities (PortlandActivities). Provides information 
about activities of each person including location of 
activity, type and time of the activity. 
Contacts (PortlandContactGraph). Provides a detailed 
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PersonLocationTime. For every person Pi, i = 1…M 
(M = 1.6 million), we constructed a binary matrix PLTi 
with L (=243,423) columns and 24 rows. Element 
PLTi(l,h) has a value 1 if person Pi was at location Ll 
during hour h, and 0 otherwise. 

graph of contacts between people, their duration, and 
their type of contact. 
Infections (PortlandDendrogram). Provides detailed 
information about infection spread through the first 20 
generations. For each person infected in generation i, 
we are given information about where infection 
occurred and which person from generation (i−1) 
transmitted it. 

Generation. For every person Pi, i = 1…M (M = 1.6 
million), we recorded its infection generation. 
Elements of the resulting vector G(i) were set to 0 if 
the person was not infected during the time of 
simulation, and to a number between 1 and 20 to 
indicate the infection generation.  

2.2. Data Preprocessing 

The original data provides all pertinent information 
about the specific instance of an infection outbreak as 
simulated by EpiSims model. Our goal was to 
transform the original data into a form that could be 
realistically collected with the use of current 
technology and without overstepping boundaries of 
privacy. We used the following assumptions: 

GenerationLocationTime. For every triple (g, Ll, h), 
we recorded the total number of infected people from 
generation g (=1…20) present at location Ll at hour h, 
and saved it as element GLTg(l,h) of matrix GLTg.  
GenerationPersonLocation. For every triple (g, Pi, Ll) 
we recorded  the total number of contact hours person 
Pi spent with infected people from generation g at 
location Li, and saved it as element GPLg(i,l) of matrix 
GPLg. This value can be obtained by using the dot 
product between PLTi and GLTg matrices. 

1. It is possible to track movements of people 
through the use of cellular phone tracking data.  

2. It is difficult to measure activity type, actual 
contacts and contact type with other people. This 
information could not be easily obtained by the 
current technology, and would represent a serious 
privacy breach. 

Out of these five sets, we used LocationActivity, 
Generation, and GenerationPersonLocation data in 
the further study.  
 3. Types of activities at each location could be 

obtained. For example, it could be measured that 
100 people are present at location Li between hours 
7−12 and that 70% of them are there for work, 
while 30% are there for recreational purposes. This 
type of information can be collected anonymously 
and without any intrusion of privacy. 

3. Methodology 

3.1. Problem Definition 

Our objective was to explore whether or not we could 
predict if healthy person Pi will become infected in 
generation g. This task can be defined as a 
classification problem by representing person Pi as an 
L-dimensional vector xi

g = (xi1…xiL), where xil = 
GPLg−1(i,l), and labeling it as yi

g = 1 if G(i) = g, and yi
g 

= −1 otherwise. We denote the resulting data set as Dg 
= {(xi

g,yi
g), i = 1…M}. 

4. It is difficult to know where an infection 
occurred and who transmitted it. Although this 
information could be estimated by interviewing 
infected people, we assume it would be difficult to 
collect it in a timely and comprehensive manner. 

5. It is possible to estimate the generation of each 
infected person. For example, a reasonable 
generation estimate could be obtained by recording 
the time at which symptoms become visible. 

Given these definitions, the classification problem can 
be stated as learning from historical data D1…Dg−1 to 
build a prediction model f(x) that predicts whether a 
person P represented with an attribute vector x will 
become infected in generation g. Instead of pure 
classification, it is more appropriate to use prediction 
model f(x) to rank all people by their risk of becoming 
infected. By default, we assume that the risk of 
infection is negligible for people with zero vectors x 
(i.e., people not in contact with infected people from 
generation g−1). This assumption, while valid for the 
specific data set studied here, might not be appropriate 
for infections that do not require direct human contact. 

Given the assumptions, we produced several data sets: 

LocationActivity. For each location Li, i =1…L (L = 
243,423), we recorded 33 activity types, Aj, j = 1…33. 
These activity types were derived from the Activities 
table. Elements of the resulting table LA were LA(i,1) − 
total person-hour occupancy at location Li during the 
day by people having “Home” activity; LA(i,2) to 
LA(i,5) − the occupancy during hours 1−6, 7−12, 
13−18, 19−24 by people having “Work” activity. The 
remaining 7 quadruples of columns were filled in 
similarly to LA(i,2) − LA(i,5), by recording the 
occupancy of people engaging in “Shop,” “Visit,” 
“Social/ Recreational,” “Other,” “Pick up or drop off a 
passenger,” “School,” and “College” activities.  

3.2. Approach 

The basic idea of our approach was that the risk of 
infection varies with the type of location where 
infected people and people at risk are gathered.  
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In the simplest case, which we will call the baseline 
predictor, the total number of contact hours with 
infected people is used as measure of infection risk − 
the larger it is, the greater the risk of contracting the 
disease. Therefore, the baseline predictor can be 
described as f(xi) = Σl(xil).  

3.4. Classification Models 

In this study, we considered Linear Regression (LR) 
and Support Vector Machines (SVMs) with linear 
kernels. Both algorithms are directly applicable to 
infection risk prediction because their outputs are 
correlated with the probability of infection. Let us 
represent each person Pi with pair (zi,yi), where zi = 
[zi1…ziK] is attribute vector and yi is class label.  

As another extreme, one can attempt to build predictor 
f directly from the L-dimensional data Dg−1. There are 
two major problems with this approach. One is dealing 
with highly dimensional attribute space, because every 
location is represented as an attribute. Another is 
ability to generalize. For example, if the outbreak was 
in the eastern part of a city, the trained predictor will 
not be able to generalize and predict infection risk in 
the rest of the city.  

LR is optimized to find coefficients α0, α1…αK that 
minimize the mean squared prediction error E[(y − 
f(z))2], where  

∑ α+α= =
K
i ii zzf 10)( . 

SVMs (Vapnik, 1995) are optimized to find the 
decision hyperplane with the maximum separation 
margin between positive and negative data points. The 
output of SVMs for attribute vector z = [z1…zK] is 
calculated as 

Our approach is to aggregate all locations into a small 
number of clusters and use the clusters as attributes in 
classification. Let us assume that location Ll is assigned 
to one of the K clusters as c(Ll) ∈ {1…K}. The original 
L-dimensional attribute vector xi can be transformed 
into a K-dimensional new attribute vector zi = 
(zi1…ziK), whose elements zij are defined as 

∑ α+= =
SN

j jii zzKybzf 1 ),()( , 

where NS is number of support vectors selected from 
training data, αi, i = 1…NS, and b are model parameters 
obtained by optimization, and K is an appropriate 
kernel function. For SVM training, we used SPIDER 
version 1.6 package with SVMLight optimizer. Linear 
kernel was used and slack variable was set to C=100. 
Because the number of positive and negative examples 
is unbalanced, we used the balanced ridge method. 

∑=
= jLc

ilij
l

xz
)(

. 

This operation results in reduction of the original L-
dimensional into K-dimensional attribute space. In the 
following section we describe an approach for 
clustering of locations. 3.5. Accuracy Measure 

The objective of infection risk prediction is to achieve 
a high ranking of people that are most at risk from 
infection. To evaluate prediction quality we used AUC 
accuracy obtained as the area under the ROC curve. An 
ROC curve measures the trade-off between true 
positive (TP; fraction of positives predicted as 
positives) and false positive (FP; fraction of negatives 
predicted as positives) prediction rates for different 
prediction cutoffs. Given the prediction cutoff θ, all 
data points with prediction above θ are considered 
positive and all below negative. If θ is very small, no 
positives are predicted, and TP = 0 and FP = 0, while if 
θ is very large TP = 1 and FP = 1. Predictors that 
achieve high TP over a range of FP are considered 
accurate – AUC measures exactly this aspect of 
prediction quality. Perfect predictors achieve AUC = 1, 
random predictors have AUC = 0.5.  

3.3. Clustering of Location Attributes 

Our approach is based on clustering of 
LocationActivity data LA (see Section 2.2). The LA 
data provides useful information about the type of 
activities occurring at any given location. Our 
hypothesis was that those locations with similar types 
of activities are likely to pose similar infection risks.  

We used the k-means algorithm to cluster L (= 
243,423) locations into K = 2, 5, 10, 20, 50 clusters. 
Before clustering, we transformed the LA data in two 
different ways:  

LogLA. In this case, prior to clustering, the LA matrix 
was transformed to LogLA as LogLA(i,j) = log(1+ 
LA(i,j)). This step is justified by the nearly lognormal 
distribution of each of the 33 LA attributes.  

LogNormLA. In this case, LogLA was further scaled 
to LogNormLA, such that every of the column of the 
new matrix has mean 0 and standard deviation 1. This 
step is justified by the need to decrease the influence of 
the most common activities (e.g. “Home” and “Work”) 
on clustering.  

4. Results  

We first explored the usefulness of LogLA and 
LogNormLA transformations prior to location 
clustering. In Table 1, we show the AUC accuracy of 
LR  predictors  trained  on  generation  5  (G5) data and 
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tested on generation 6 to 15 (G6 − G15) data. The 
second column of Table 1 is the AUC accuracy of the 
baseline predictor that ranks people by the total number 
of contact hours with infected people from the previous 
generation (G4). Columns 3 − 7 represent AUC 
accuracies obtained on data obtained by applying k-
means clustering with K = 2, 5, 10, 20, 50 on LogLA 
transformed data. Columns 8 − 12 represent the 
corresponding AUC accuracies obtained when using 
LogNormLA transformation before clustering.  

The results indicate that K = 10 and K = 20 clusters is 
the best choice with LogLA transformation, while K = 
20 clusters is the best choice with LogNormLA 
transformation. Moreover, LogNormLA transformation 
resulted in an increase of AUC accuracy by up to 0.02, 
as compared to LogLA. Additionally, as compared 
with the baseline predictor, LogNormLA predictors 
have up to 0.05 higher AUC accuracy. The accuracy of 
LR predictors decreases with generation number. 
Additionally, the difference between LR predictors and 

the baseline predictor seems to slowly decrease with 
the generation number. 

In the next set of experiments we first explored if 
successful predictors could be obtained quickly after 
the onset of an infection outbreak. Columns 4 − 7 in 
Table 2 represent accuracies of LR predictors learned 
on generation 1, 3, 5, 10 data and tested on all 
generations (G1−G15). The results show gradual 
improvement of AUC accuracies with the generation 
number. While predictor trained on G1 data was 
slightly inferior to the baseline predictor, the G3 
predictor was more accurate than the baseline 
predictor. LR predictors trained on G5 and G10 data 
were the most accurate, and had a slight difference 
between them. Based on the LR results, it seems that 
successful predictors could be developed very early 
after the outbreak.  

Columns 8 − 11 in Table 2 show the accuracy of SVM 
predictors with linear kernel trained on G1, G3, G5, 

TEST 

G6 
G7 
G8 
G9 
G10 
G11 
G12 
G13 
G14 
G15 
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Table 1. AUC*100 accuracy of LR model trained on G5 data and tested on G6−G15 data. 

LogLA Clustering, K =  LogNormLA Clustering, K = BASELINE 
2 5 10 20 50 2 5 10 20 50 

74.0 74.7 74.6 75.9 76.9 77.4 74.2 75.9 77.0 78.2 78.0
74.0 74.5 74.3 76.7 77.8 77.5 74.4 75.3 77.3 79.2 78.2
73.7 74.2 73.8 75.0 75.6 75.8 73.8 75.5 76.4 77.8 76.5
71.0 71.6 72.0 73.5 73.9 73.7 71.2 72.9 73.6 74.3 73.6
68.0 68.8 68.9 70.6 71.2 71.5 68.0 69.9 70.7 72.2 71.9
68.2 68.6 69.2 70.5 70.8 70.9 68.0 69.7 70.6 72.1 71.0
67.3 67.7 68.3 69.1 69.5 69.4 66.8 68.4 69.0 70.4 69.4
67.0 67.3 67.8 68.6 68.4 68.6 66.0 67.7 68.1 69.8 68.1
65.8 66.2 66.3 67.0 67.1 67.0 64.6 66.0 66.5 68.1 66.7
65.5 66.2 65.7 66.4 66.5 66.5 63.8 65.0 65.7 67.2 65.9

C*100 accuracy of LR and SVM models trained on G1, G3, G5, G10 data and tested on G1 − G15 
rm clustering was used with K = 20. Second column is the number of infected people in generation G

LR SVM T |Gi| 
 

BASELINE 
 G1 G3 G5 G10 G1 G3 G5 G10 

 84 73.4 80.8 79.3 81.1 75.9 82.1 72.5 81.5 78.3
 149 78.9 79.1 79.8 81.2 82.2 78.4 81.3 80.7 81.8
 238 76.6 76.7 78.9 79.7 78.1 70.9 79.3 79.5 79.4
 420 76.4 73.7 77.4 79.1 79.6 68.8 76.8 78.8 78.3
 648 75.5 73.8 75.8 79.2 77.3 71.4 74.0 78.6 75.5
 1101 74.0 72.7 76.3 78.2 78.4 68.0 76.2 78.0 77.7
 1881 74.0 74.5 76.9 79.2 78.7 70.1 76.6 78.7 77.8
 2997 73.7 72.7 75.5 77.8 77.3 67.5 75.6 77.6 77.0
 4718 71.0 69.4 72.3 74.4 74.9 58.1 71.9 74.3 74.6
 7570 68.0 67.6 69.6 72.2 73.1 64.6 68.8 72.0 72.2
 12765 68.2 67.3 69.5 72.1 72.2 62.7 69.1 72.0 71.5
 21167 67.3 65.9 68.2 70.4 70.5 66.0 67.8 70.4 69.9
 34063 67.0 65.4 67.1 69.8 70.1 63.1 68.2 69.9 68.9
 51711 65.8 64.5 65.9 68.1 68.3 61.3 65.5 67.8 67.0
 70174 65.5 64.0 65.4 67.2 67.3 59.7 64.8 66.5 67.1
4



and G10 data and tested on G1 − G15 data. Accuracies 
of SVM and LR models are comparable. We also 
evaluated SVM with nonlinear kernels, such as a 
polynomial kernel of degree 2, and a radial basis 
function kernel. However, we did not observe 
significantly improved accuracy. (Results are not 
shown.) Considering significant efforts needed for 
selection of parameters of SVMs and high 
computational complexity of SVM training, linear 
regression seems to be the more attractive alternative 

Both LR and SVM predictors can be used to analyze 
the influence of each location type on infection spread. 
In Figure 1, we illustrate how to visualize the results 
and potentially gain an insight into properties of 
infection. In the upper panel of Figure 1, we illustrate 
each of the K = 20 location types obtained by k-means 
clustering of LogNormLA transformed data. Each of 
the 33 rows represents the number of people pursuing 
one of the 33 activities represented by the 
LocationActivity data (Section 2.2), while each of the 
20 columns is a representative of one of the 20 clusters. 
Dark boxes mean that many people pursue the given 
activity at the given location, while light boxes mean 
that only a few people are involved. For example, 
column 17 corresponds to locations that most likely 

represent colleges since the most prevalent activity is 
of type “College” and occurs between hours 7-24 
(boxes in rows 31-33 are the darkest). Bars in the lower 
panel of Figure 1 represent coefficients α1…α20 of the 
LR model. Analysis of the coefficients provides an 
insight about risk factors associated with each location 
type. For example, location types 8 and 11, with the 
highest α values, seem to correspond to predominantly 
residential locations (with the darkest box is in row 1 
and relatively light remaining boxes), suggesting that 
being collocated with an infected person at home 
carries the largest risk of infection.  
 

4. Conclusions 

Our results indicate that the proposed location 
aggregation approach is very promising for the 
prediction of infection risk. As compared to the 
baseline approach that uses number of people-hours in 
contact with the infected people as predictor of 
infection risk, AUC accuracy of our method is up to 
0.05 higher. Additionally, it seems that accurate 
predictors could be developed early after the outbreak, 
by using only the first few generations of infected 
people. Analysis of the prediction model provided an 
insight into the risk factors associated with various 
location types. This information can be useful in 
disease modeling and developing successful control 
strategies and vaccination deployment.  
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Further improvements in location aggregation are 
possible, possibly by integrating k-means clustering 
with expert knowledge about various location types, or 
by including demographic and health related 
information of the exposed people. 
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Figure 1. Illustration of location clusters and the 
associated risks.  
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