
COMPRESSED KERNEL PERCEPTRONS  
 

Slobodan Vucetic* Vladimir Coric Zhuang Wang 

Department of Computer and Information Sciences 
Temple University 

Philadelphia, PA 19122, USA 
* email: vucetic@ist.temple.edu 

 

Abstract 

Kernel machines are a popular class of machine learning algorithms that achieve state of 
the art accuracies on many real-life classification problems. Kernel perceptrons are 
among the most popular online kernel machines that are known to achieve high-quality 
classification despite their simplicity. They are represented by a set of B prototype 
examples, called support vectors, and their associated weights. To obtain a classification, 
a new example is compared to the support vectors. Both space to store a prediction model 
and time to provide a single classification scale as O(B). A problem with kernel 
perceptrons is that the number of support vectors tends to grow without bounds with the 
number of training examples on noisy data. To reduce the strain at computational 
resources, budget kernel perceptrons have been developed by upper bounding the number 
of support vectors. In this work, we proposed a new budget algorithm that upper bounds 
the number of bits needed to store kernel perceptron. Setting the bitlength constraint 
could facilitate development of hardware and software implementations of kernel 
perceptrons on resource-limited devices such as microcontrollers. The proposed 
compressed kernel perceptron algorithm decides on the optimal tradeoff between number 
of support vectors and their bit precision. The algorithm was evaluated on several 
benchmark data sets and the results indicate that it can train highly accurate classifiers 
even when the available memory budget drops below 1 Kbit. This promising result points 
to a possibility of implementing powerful learning algorithms even on the most resource-
constrained computational devices. 

 

1 Introduction 
Kernel perceptrons are popular online binary classification algorithms that learn a 
mapping f: X → R from a stream of training examples S = {(xt, yt), t = 1…T}, where xt ∈ 
X is an M-dimensional input vector, called an instance, and yt ∈ {−1, +1} is a binary 
variable, called a label. Typically, the resulting kernel perceptron can be represented as  

,),()(
1
∑
=

=
T

i
ii xxKxf α  (1) 

where αi are weights associated with training examples, and K is the kernel function. In 
practice, most weights become zero and the instances with nonzero weights are called 
support vectors. We note that the functional form (1) is common to several other machine 
learning algorithms such as support vector machines, radial basis functions, and Parzen 

1 



window classifiers. The classification of instance x by kernel perceptron is obtained as 
sign(f(x)) while |f(x)| can be interpreted as the prediction confidence. 

In its basic form, training of a kernel perceptron consists of a simple procedure: starting 
from the zero function f(x) = 0 at time t = 0, training examples are observed sequentially, 
and f(x) is updated as f(x) ← f(x) + αt K(xt, x) where αt = yt every time the instance xt is 
misclassified, i.e. when yt f(xt) ≤ 0. Despite the simplicity of this training algorithm, 
kernel perceptrons often achieve impressive classification accuracies on highly nonlinear 
problems. On the other hand, training and use of kernel perceptrons can place a 
surprisingly heavy burden on computational resources. The main reason for this is that 
the number of support vectors grows proportionally with the number of training examples 
in noisy classification problems [3]. Therefore, the space required to store kernel 
perceptron is O(TM), the time required to make a single prediction is also O(TM), and the 
training time is O(T2M).  

The budget kernel perceptrons [5] have been developed to address the problem of the 
unbounded growth in resource consumption with training data size. Their basic idea is to 
maintain a constant number of support vectors during the training by removing a single 
support vector every time the budget is exceeded upon addition of a new support vector. 
Given a budget of B support vectors, they achieve constant space scaling O(BM) and 
linear training time O(TBM). Among the proposed removal approaches are removal of a 
randomly selected support vector (called Random Perceptron) [4], the oldest support 
vector [6], or the support vector with the largest αt f(xt) [9]. The experimental results 
indicate that reasonably accurate kernel perceptrons can be trained using quite modest 
budgets. More recently, a related algorithm was proposed [7] that has an option to project 
the new support vector to the existing ones instead of adding it, whenever it can be done 
with a sufficiently small degradation of the classifier. While it shows an improved 
classification accuracy for the same budget, its space scaling is O(B2M) and training time 
is O(TB2M). In this sense, this algorithm could support only the budget of B  support 
vectors to maintain the same performance as the algorithms with budget of B that use 
removal.  

In this paper, we propose a kernel perceptron algorithm that defines budget in terms of 
the available bitlength L instead of the number of support vectors. The budget expressed 
in bitlength can be directly linked to the hardware-level memory capacity and can be 
appropriate when implementing kernel perceptrons on low-resource devices such as 
microcontrollers. Constraining the memory budget in this way opens an interesting 
question of a tradeoff between the number of support vectors and their arithmetic 
precision. More specifically, the bitlength needed to store a kernel perceptron can be 
expressed as the sum  

L = B⋅M⋅bx + B⋅bα + la (2) 

where bx is the precision for each of the M instance attributes, bα is the precision for 
support vector weights, and la is the bitlength needed for the ancillary variables.  

In this study we focus on Random Perceptron due to its simplicity and a very frugal use 
of computational resources (e.g. only one bit is needed to store each support vector 
weight). We will show that the best choice of B and bx depends on the budget L and the 

2 



choice of kernel function K. Using the estimations for quality loss due to support vector 
removal and loss due to loss of precision, the proposed Compression Kernel Perceptron is 
a modification of the Random Perceptron that allows determination of the optimal values 
of B and bx during training. We will experimentally illustrate on several benchmark data 
sets that the proposed algorithm can train accurate classifiers even when the available 
memory budget is severely limited.  

It should be noted that a significant body of research exists on the related topic of 
efficient hardware implementations of various machine learning and signal processing 
algorithms. In the area of kernel machines, for example, solutions have been proposed for 
implementations on fixed point processors of support vector machines [1] and kernel 
perceptrons [2]. The main focus of these and similar studies was on modifying the 
original algorithms to reducing the quantization effects of calculations. However, these 
studies do not address the memory constraint problem and the proposed algorithms could 
be used only when training data sets are small. In our work we assume availability of a 
floating point processor and focus of optimizing quality of learning given the limited 
memory. Since our algorithm typically results in kernel perceptrons represented with a 
precision of only a few bits, it is evident that it could be possible to implement it on a 
fixed-point processor without much loss in the performance. 

 

2 Preliminaries 
The classical perceptron [8] is a linear function of type f(x) = wT x that starts with f(x) = 0, 
and updates it as f(x) ← f(x) + yt xt every time the instance xt is misclassified, yt f(xt) ≤ 0. 
As an alternative to the classical perceptron, instances x can be first mapped to feature 
vectors Φ(x) and the classical perceptron can be trained on the feature vectors. The 
resulting perceptron will be a linear function in the feature space,  

),()( xwxf TΦ= Φ  (3) 
where wΦ is a vector in the feature space expressed as 

.)(
1
∑
=

Φ Φ=
T

i
ii xw α  (4) 

If mapping Φ is properly chosen, f(x) could solve nonlinear classification problems. 
Kernel perceptrons are a special type of perceptrons that operate in the feature space, 
where Φ is induced by a Mercer kernel K such that Φ(x)TΦ(z) = K(x, z). The main benefit 
of using this special class of mappings is that the resulting perceptron can be expressed as 
(1), so that there is no need to explicitly work in the, potentially highly dimensional, 
feature space. Among many possible kernel functions, the most popular are linear kernel, 
K(x, z) = xT z, that results in the classical perceptron, and Radial Basis Function (RBF) 
kernel, K(x, z) = exp ( −|| x − z ||2 / A2 ), where A is the kernel width, that is known to achieve 
state of the art accuracy on many highly nonlinear problems. It is interesting to note that 
the RBF kernel induces an infinitely dimensional feature space. 

The Compressed Kernel Perceptron proposed in this paper is based on Random 
Perceptron [4], a budget kernel perceptron with random removal of support vectors when 
budget is exceeded. This choice was based on the simplicity of the algorithm, which is 

3 



fundamental in severely resource constrained applications. Moreover, Random 
Perceptron achieves similar performance and has the same error bound as the more 
involved budget perceptrons [4]. From the memory budget viewpoint, Random 
Perceptron is very desirable because support vector weights are binary (they equal the 
class labels) and so can be stored with a single bit. This represents a significant advantage 
over Forgetron [6] that removes the oldest support vector. Forgetron subjects weights to 
an exponential decay that requires multi-bit representation of weights. As a result, 
Forgetron can have fewer support vectors given the same memory budget. Random 
Perceptron is also more efficient than Tighter Perceptron [9], a popular budget perceptron 
algorithm that removes support vector with the highest value of αt f(xt) (being the most 
confidently correctly classified support vector). In this case, the weights remain binary as 
in Random perceptrons, but there is a significant computational overhead in searching for 
the best support vector to remove. It turns out that this requires either constant space and 
O(BK) time for every removal, or O(B) time and space, which are both inferior to 
constant time and space required for removal of a random support vector. 

 

3 Methodology 
The main dilemma in the Compressed Kernel Perceptron is what to do when the memory 
budget is exceeded and when a new support vector should be added. One option is to 
reduce precision of the existing support vectors to accommodate for the new support 
vector and another is to replace a randomly selected support vector with the new one (as 
is done in Random perceptron). To answer this question, we will derive expressions for 
the loss due to precision reduction, lossQ (Section 3.1), and the loss due to replacement of 
a support vector, lossR (Section 3.2). Given the values of lossQ and lossR, the Compressed 
Kernel Perceptron can be described with a pseudo code in Table 1. 

We define the loss as the squared norm of the difference between weights of the desired 
and the damaged kernel perceptron, 

loss = || wΦ − wΦ′ ||2, (5) 

where wΦ is the (potentially infinitely dimensional) perceptron weight and wΦ′ is the 
same weight after the decrease in precision of support vectors or after the removal of a 
support vector. In the following, we will focus on loss for kernel perceptrons with RBF 
kernels.  

3.1. Quantization loss 

Let us first calculate loss of kernel perceptron when attributes [xt1 xt2 … xtM] of instance xt 
are quantized as Q(xt) = [Q(xt1) Q(xt2) … Q(xtM)] to b-bit precision. We will assume,that 
all attributes are scaled to range between [0, 1] and that quantization is uniform (each of 
the 2b codewords represents a bin of the same length 2−b). In this case, the quantization 
error of m-th attribute, Δtm = xtm − Q(xtm), is uniformly distributed in the range between 
−2−(b+1) and 2−(b+1). The quantization loss for reducing precision from infinite to b-bit can 
be expressed  

4 



{ }

{ }.))(,(2))(),((),(

||))(()(||||))(()(||)(

1

2

1

222

11

∑

∑∑∑

=

===

−+⋅=

Φ−Φ⋅=
⎭
⎬
⎫

⎩
⎨
⎧

Φ−Φ=

T

t
ttttttt

T

t
ttt

T

t
tt

T

t
ttq

xQxKxQxQKxxKE

xQxExQxEbLoss

α

ααα
 

 

(6) 

When the feature space Φ is induced by RBF kernel with width A, (6) can be written as  

{ } .)||)(||exp(12))(,(12)(
1

2

2
2

1

2 ∑∑
== ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −

−−⋅=−⋅=
T

t

tt
t

T

t
tttq A

xQxExQxKEbLoss αα  (7) 

The difference xt − Q(xt) is an M-dimensional random vector whose elements are 
independent random variables with uniform distribution U(−2−(b+1), 2−(b+1)). Therefore, we 
can write 

{ } ,)exp(1)||)(||exp(1 2
2

2

⎟
⎠
⎞

⎜
⎝
⎛ −−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −

−−
Mtt E

A
xQxE ε  (8) 

where ε ~ U(−a, a), and a is defined as a = 2−(b+1)/A.  

Since { } aaerfE 2/)()exp( 2 πε ⋅=− , the quantization loss can be expressed as  

( ) .2/)(12)(
1

2∑
=

⋅⎟
⎠
⎞⎜

⎝
⎛ ⋅−⋅=

T

t
t

M
q aaerfbLoss απ  (9) 

The quantization loss Lossq(b) can be directly used in deriving lossq incurred by loss of 
precision needed for inclusion of a new support vector. Let us, for a moment, neglect 
quantity la from (2) and observe that in Random Perceptrons αt ∈ {−1, +1} for B support 
vectors and αt = 0 otherwise (thus, the sum Σαt

2 in (9) equals B), and that bα = 1. From 
(2) it follows that the allowed bit precision for kernel perceptron with B support vectors 
equals b = (L/BB − 1)/M. The value of lossq(B) due to an increase from B to (B+1) support 
vectors can be expressed as 

( ) ( )MBLLossMBLLossBloss qqq /)1/(/)1)1/(()( −−−+=  (10) 

We observe that equation (10) allows for fractional number of bits. This is not an issue, 
because lossq gives the desired information about expected distortion of kernel perceptron 
due to precision decrease upon addition of a single support vector. In our implementation, 
we address the issue of fractional number of bits b by representing fraction ⎡b⎤ − b of 
instances with b-bit precision and fraction b − ⎣b⎦ of instances with (b+1)-bit precision. 
Upon addition of the (B+1)-st support vector, precision of additional b instances is 
reduced from b+1 to b. 

5 



Table 1. Compressed Kernel Perceptron 

Input: a data sequence (x1, y1), ... (xT , yT ), kernel K, bitlength L 

Initialize: f(x) = y1K(x1,x), B = 1, b = L/M 

Output:  ,),()(
1
∑
=

=
T

i
ii xxKxf α

for t = 2, 3, … T 

   if yt f(xt) ≤ 0 

      calculate lossQ (eq. 10) and lossR (eq. 12) 

      if lossQ < lossR

         b ← L / M (B+1) 

         reduce precision of support vectors to b bits 

         f(x) ← f(x) + αt K(xt, x)   

      else 

         j ← index of a randomly selected support vector 

         f(x) ← f(x) + αt K(xt, x) − αj K(xj, x),  

 

3.2 Removal loss 

Let us now consider the loss after a randomly selected support vector is removed from 
the kernel perceptron. The resulting perceptron wΦ′ after removal of support vector xi 
from kernel perceptron wΦ can be expressed as wΦ′ = wΦ − αi Φ(xi). Naively, we can 
attempt to express the removal loss as lossR = ||wΦ − wΦ′||2 = ||αi Φ(xi)||2, which results in 
constant loss lossR = 1 for Random Perceptrons with RBF kernels. However, such 
estimation of removal loss is inappropriate.  

To illustrate this, let us consider cumulative loss due to removal of two support vectors, xi 
and xj. The removal loss in this case is lossR = ||αi Φ(xi) + αj Φ(xj)||2 = 2 + 2αi αj K(xi, xj). 
Therefore, if kernel width is large (which is quite a common choice in kernel 
perceptrons) K(xi, xj) could be close to 1 and lossR would be either close to 0 (if α’s have 
opposite sign) or 4 (if α’s have equal sign). Thus, the lossR of removal of a single support 
vector would be near 0 or 2, which is very different from the previous conclusion that it is 
always 1.  

Most real life classification data sets are noisy. Let us assume the minimal achievable 
(Bayes) error on a given data set is e. Then, the probability that a newly observed data 
point will become support vector is at least e. Given the random removal process of 
Random Perceptron, it can practically be guaranteed that every support vector currently 
in the kernel perceptron will eventually be removed. Therefore, the best possible estimate 
of the removal loss can be obtained by considering average loss after all support vectors 
currently in the perceptron are removed. Therefore, the removal loss can be estimated as 

6 



the average norm of the perceptron,  

,)(1),(1)(1
11 1

2

1
∑∑∑∑
== ==

==Φ=
B

i
ii

B

i

B

j
jiji

B

i
iiR xfy

B
xxK

B
x

B
loss ααα  (11) 

where f(x) is the prediction of a current kernel perceptron. We observe that the removal 
loss is equal to the average of prediction margins of the kernel perceptron on its support 
vectors.  

We propose to evaluate lossR using (11) after every update of kernel perceptron. A 
potential issue with this strategy is computational effort needed to evaluate (11) that 
seems to require O(B2M) time. However, with some care, the time overhead for 
calculation of lossR can be reduced to retain the computational cost of the Compressed 
Kernel Perceptron on par with the Random Perceptron. By assuming that lossR

old is 
estimate from the previous perceptron update, the lossR

new of the new perceptron where 
new support vector (xnew, ynew) replaces the old one (xR, yR) can be calculated as 

).1),()()((2 +−−⋅+= RnewRnewRRnewnew
old

R
new

R xxKyyxfyxfyBlossloss  (12) 

Since ynew f(xnew) is already known (was needed to evaluate if xnew should become a 
support vector), the main additional effort is to calculate yR f(xR) which takes the modest 
O(BM) time. 

 

4 Experiments 
Experimental setup. We evaluated Compressed Kernel Perceptron on several 
benchmark classification datasets from UCI ML Repository whose properties are 
summarized in Table 2. A few of the data sets that were originally multi-class were 
converted to two-class data sets as follows. For the digit dataset Pendigits we converted 
classes representing digits 1, 2, 4, 5, 7 (non-round digits) to the negative class and those 
representing digits 3, 6, 8, 9, 0 (round digits) to the positive class. Shuttle data set was 
converted to binary data by representing class 1 as positive and the remaining ones as 
negative. Class 1 in the 3-class Waveform data set was treated as negative and the 
remaining two as positive. Banana was originally a binary class data set. Attributes in all 
data sets were scaled to the range between [0, 1].  

In the experiments, we compared the standard kernel perceptron and the proposed 
Compressed Kernel Perceptron, both using RBF kernels of width A (listed in Table 2). 
Because the kernel perceptron is a memory-unconstrainted online algorithm it serves as 
an upper bound on achievable accuracy. Additionally, it provides useful information 
about the desired number of support vectors when computational resources are not an 
issue. For experiments with Compressed Kernel Perceptrons, we evaluated five different 
budgets, L = M×{50, 100, 200, 500, 1000}. Here, we counted only bitlength memory 
needed to store support vectors. Following (2) we should also add on top of this B bits for 
support vector weights and about 200 additional bits for the ancillary variables (this is the 
number in our current implementation). All experiments were repeated 10 times and the 
average and standard deviations are reported. 

7 



Table 2. Data set summaries 

Data sets Training set Test set M A 

Banana 4,300 1,000 2 0.1

Shuttle 42,603 14,167 9 0.1

Pendigits 7,494 3,498 16 1 

Waveform 10,000 5,000 21 1 

 
Table 3. Results on benchmark data sets. Average results over 10 repetitions are given. 
Numbers in parentheses are standard deviations 

Compressed Kernel Perceptron Perceptron 
L/M L 

 

50 100 200 500 1000 ∞  
Banana  

Accuracy 72.5 
(6.9) 

75.2 
(10.0) 

75.3 
(5.0) 

83.6 
(4.6) 

84.0 
(2.5) 

86.5 
(1.5) 

B 14.8 
(0.4) 

27.6 
(0.5) 

52.6 
(1.9) 

120.2 
(0.8) 

229 
(4.5) 

600.0 
(20.0) 

b 3.4 
(0.1) 

3.6 
(0.1) 

3.8 
(0.1) 

4.2 
(0.0) 

4.4 
(0.1) 

64 

Shuttle  
Accuracy 93.2 

(8.0) 
95.0 

(35.0) 
96.7 
(1.3) 

97.4  
(0.8) 

98.1 
(1.8) 

99.6 
(0.5) 

B 11 
(0.0) 

21 
(0.0) 

40.2 
(1.3) 

91.6 
(0.9) 

175.6 
(1.9) 

262.0 
(44.2) 

b 4.5 
(0.0) 

4.7 
(0.0) 

5.0 
(0.1) 

5.5 
(0.1) 

5.7 
(0.1) 

64 

Pendigits  
Accuracy 82.6 

(5.2) 
86.6  
(4.9) 

90.6 
(2.4) 

93.6 
(3.5) 

98.1  
(1.3) 

98.3   
(0.3 ) 

B 40.0 
(0.0) 

74.4 
(1.3) 

142.8 
(7.2) 

198.8 
(0.4) 

210 
(0.0) 

204.6  
(4.7) 

b 1.3 
(0.0) 

1.3 
(0.0) 

1.4 
(0.0) 

2.0 
(0.0) 

4.8 
(0.0) 

64 

Waveform  
Accuracy 75.1 

(6.3) 
75.1 
(5.4) 

79.6 
(3.0) 

82.0 
(4.2) 

84.0 
(6.9) 

85.1 
(3.6) 

B 35.6 
(0.6) 

62.8 
(0.4) 

106.2 
(8.0) 

217.0 
(3.8) 

408.0 
(7.7) 

1473.2 
(69.0) 

b 1.4 
(0.0) 

1.6 
(0.0) 

1.9 
(0.1) 

2.3 
(0.0) 

2.4 
(0.0) 

64 

 

8 



Results. In Table 3 we provide information about accuracy, number of support vectors, 
and their bit precision for Compressed Kernel Perceptrons trained on benchmark data 
sets. Accuracy results for the standard kernel perceptron are shown in the last column of 
Table 3. It is evident that accuracies of Compressed Kernel Perceptron are very 
competitive to its memory unbounded counterpart. As expected, the most constrained 
scenario with 50 bits per attribute (i.e., 100 bits total for Banana, 450 for Shuttle, 800 for 
Pendigits, and 1050 for Waveform data set) resulted in considerably less accurate 
classification than the kernel perceptron. This is understandable since kernel perceptron 
needed hundreds of support vectors. However, the difference was not too large and was 
in all cases much higher than the 50% of the trivial predictor. Clearly, as the memory 
budget increased, the accuracy of our algorithm slowly approached that of kernel 
perceptron.  

Considering the precision of support vectors, we observe that it gradually increased with 
the memory budget. This behavior is an expected consequence of the tradeoffs between 
number of support vectors and their precision estimated by equations (10) and (12). 

 

5  Conclusions 
In this study, we proposed the Compressed Kernel Perceptron algorithm that allows 
training of kernel perceptrons on devices with extremely limited memory budgets. The 
algorithm is based on Random Perceptron, a simple and memory friendly online learning 
algorithm that keeps number of support vectors constant by removing a random support 
vector upon addition of a new support vector. Compressed kernel perceptron estimates its 
distortions due to removal of a support vector and reduction in bit precision of support 
vectors and decides on the optimal tradeoff between number of support vectors and their 
precision. The experimental results showed that accurate classifiers could be learned 
efficiently while consuming very little memory.  

The results are also useful in establishing lower bounds on memory needed to build an 
accurate classifier. They indicate that this lower bound is clearly a function of problem 
complexity and dimensionality. On the data dimensionality side, it is possible that careful 
attribute selection or transformation could lead to decrease in number of attributes and 
improve utilization of the available memory. What remains an open problem is whether it 
could be possible to perform attribute selection as part of the memory-constrained online 
algorithm without introducing a significant time and memory overhead. 

In equation (2) we mentioned ancillary variables but we did not discuss them further. In 
our implementation of Compressed Kernel Perceptron, we require several ancillary 
variables that are in single precision format. These include variables to calculate kernel 
distance, quantization and removal loss, to determine perceptron prediction, and perform 
precision reduction. By observing that some of these variables can be reused for different 
purposes, our current implementation requires 6 double and 2 integer ancillary variables 
which introduces an overhead of about 200 additional bits. In extremely memory-limited 
applications it would be interesting to explore if this overhead could be reduced further. 

There are many avenues for future research. One is implementation of Compressed 
Kernel Perceptron on floating and fixed point microcontrollers. Another is exploring how 

9 



to incorporate some critical machine learning operations such as attribute selection and 
kernel size selection in the algorithm, thus producing a truly adaptive learning agent. 
Finally, it would be interesting to explore if similarly successful memory-efficient 
algorithms could be developed for other types of kernel-based machine learning 
algorithms in problems of binary and multi-class classification, regression, clustering, 
and density estimation.  
 
Acknowledgement 
This work was supported by the U.S. National Science Foundation Grant IIS-0546155. 

 

References  
[1] D. Anguita, A. Boni, and S. Ridella. A digital architecture for support vector 
machines: theory, algorithm, and FPGA implementation. IEEE Transactions on Neural 
Networks 14: 5, 993-1009, 2003. 

[2] D. Anguita, A. Boni, and S. Ridella. Digital kernel perceptron. Electronics 
Letters, 38: 10, 445-446, 2002. 

[3] C. Burges. Simplified support vector decision rules. In Proceedings of 
International Conference on Machine Learning, 1996. 

[4]  N. Cesa-Bianchi and C. Gentile. Tracking the best hyperplane with a simple 
budget perceptron. In Proc. of the Nineteenth Annual Conference on Computational 
Learning Theory, 2006. 

[5] K. Crammer, J. Kandola, and Y. Singer. Online classification on a budget. In 
Advances in Neural Information Processing Systems 16, 2004. 

[6] O. Dekel, S. Shalev-Shwartz, and Y. Singer. The Forgetron: A kernel-based 
perceptron on a fixed budget. In Advances in Neural Information Processing Systems 18, 
2005. 

[7] F. Orabona, J. Keshet, B. Caputo. The Projectron: a bounded kernel-based 
perceptron. In Proceedings of International Conference on Machine Learning, 2008. 

[8] F. Rosenblatt. The Perceptron: A probabilistic model for information storage and 
organization in the brain. Psychological Review 65, 386–407, 1958. 

[9] J. Weston, A. Bordes, and L. Bottou. Online (and offline) on an even tighter 
budget. In Proceedings of the Tenth International Workshop on Artificial Intelligence and 
Statistics, 2005. 

 

 

10 


