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ABSTRACT Intrinsically disordered proteins
are characterized by long regions lacking 3-D struc-
ture in their native states, yet they have been so far
associated with 28 distinguishable functions. Previ-
ous studies showed that protein predictors trained
on disorder from one type of protein often achieve
poor accuracy on disorder of proteins of a different
type, thus indicating significant differences in se-
quence properties among disordered proteins. Im-
portant biological problems are identifying differ-
ent types, or flavors, of disorder and examining
their relationships with protein function. Innova-
tive use of computational methods is needed in
addressing these problems due to relative scarcity
of experimental data and background knowledge
related to protein disorder. We developed an algo-
rithm that partitions protein disorder into flavors
based on competition among increasing numbers of
predictors, with prediction accuracy determining
both the number of distinct predictors and the
partitioning of the individual proteins. Using 145
variously characterized proteins with long (>30
amino acids) disordered regions, 3 flavors, called V,
C, and S, were identified by this approach, with the
V subset containing 52 segments and 7743 residues,
C containing 39 segments and 3402 residues, and S
containing 54 segments and 5752 residues. The V, C,
and S flavors were distinguishable by amino acid
compositions, sequence locations, and biological
function. For the sequences in SwissProt and 28
genomes, their protein functions exhibit correla-
tions with the commonness and usage of different
disorder flavors, suggesting different flavor-func-
tion sets across these protein groups. Overall, the
results herein support the flavor-function approach
as a useful complement to structural genomics as a
means for automatically assigning possible func-
tions to sequences. Proteins 2003;52:573–584.
© 2003 Wiley-Liss, Inc.
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INTRODUCTION

Although proteins that fail to self-fold into specific 3-D
structure are receiving increased attention as evidenced
by several recent major reviews,1–6 the concept is not new.
That a native protein’s function can depend on a structural

ensemble rather than a unique 3-D structure was sug-
gested more than 50 years ago7 and that some proteins do
not fold because of an atypical amino acid composition was
suggested more than 20 years ago.8,9 More recently, such
proteins have been called “natively unfolded,”10 “intrinsi-
cally unstructured,”1 and “intrinsically disordered.”2 The
failure to self-fold into specific 3-D structure is likely
encoded by the amino acid sequence11 and, furthermore,
regions lacking specific 3-D structure have so far been
associated with 28 distinguishable functions, ranging from
DNA binding to display of sites for phosphorylation to
preventing interactions by means of excluded volume
effects.12

A disordered protein or a disordered region lacks specific
tertiary structure and is comprised of an ensemble made
up of members with distinct and usually dynamic Ram-
achandran angles. In contrast, an ordered protein, even an
ordered protein lacking helix or sheet, is comprised of an
ensemble with nearly all of the members having the same
canonical set of Ramachandran angles. Thus, regions of
disorder should not be confused with loops or other regions
that lack regular secondary structure. Following previous
researchers,13 we suggested that disordered proteins could
be either “extended” or “collapsed,”14 whereas others have
pointed out data indicating the possibility of a third
disorder class intermediate between extended and col-
lapsed.5 Collapsed disorder resembles the molten glob-
ule,15 a protein form with regular secondary structure but
absent of fixed tertiary interactions, and regions of ex-
tended disorder can also exhibit secondary structure.
Thus, proteins or regions with regular secondary structure
are not always ordered.

On the ordered protein side, the structural classes—�-
helix, �-sheet, and other—can be visualized in protein
crystal structures. Statistical analyses of the amino acid
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compositions of regions with different secondary structure
over many proteins were carried out to determine amino
acid propensities for �-helix, �-sheet, and other.16,17 Four
protein folding classes—all �, all �, �� and � � �, can be
predicted with fairly good accuracy solely from amino acid
composition.18,19 These predictions of folding classes give
reasonably good results because of the differences in
amino acid propensities for helix, sheet, and other.

Just as ordered protein is comprised of different types of
secondary structure, intrinsic disorder is also made up of
distinguishable types as discussed above. Disordered seg-
ments, however, do not adopt unique structures and so
cannot be visualized in the usual way. An alternative to
visualization would be to determine intrinsic flexibility or
whether a given disordered region is collapsed, extended,
or intermediate, and if collapsed, the type and organiza-
tion of the semi-stable secondary structure segments. At
the present time, however, such data are limited and not
organized.5,20 Thus, an alternative approach is needed.

Studies using different Predictors of Natural Disordered
Regions (PONDRs)11 support the suggestion that disor-
dered regions exhibit different types or flavors of disorder.
That is, certain PONDRs gave high accuracy for some
disordered proteins but low accuracy for others, whereas
certain other PONDRs gave the reverse.21 To give one
example, a protein disorder predictor trained on a set of
disordered regions from various calcineurins (PONDR
CaN-1)22 completely missed a long disordered region in
the prion protein, but this region was correctly identified
by other predictors (PONDR XL-1, VL-1) trained on differ-
ent sets of disordered proteins.23

In an initial attempt to identify different flavors of
disorder, we developed a novel partitioning algorithm
based on differential prediction accuracies. This algorithm
uses the notion that a specialized predictor built on a given
disorder flavor should have significantly higher same-
flavor accuracy than other-flavor predictors or than a
global predictor applied to the same given flavor. More-
over, the algorithm was designed to cope with the follow-
ing issues: (1) order/disorder information from the avail-
able data is noisy, and the representation currently used
for prediction is imperfect and likely fails to include all of
the important, but so far unexplored attributes; and (2)
neighboring positions in a disordered sequence share very
similar local context and so are likely to be of the same
flavor.

We present results of an extensive statistical and quali-
tative evaluation of the discovered partitioning by compar-
ing the corresponding specialized predictors, as well as
amino acid properties and protein functions of different
partitions. We also show the results of applying the
specialized predictors on the SwissProt database and 28
complete genomes in order to estimate the frequency of the
various disorder flavors in nature. Finally, the flavor-
specific disordered proteins and the flavor-specific disorder
predictions are used to identify possible flavor-function
relationships.

METHODS
Data Sets

Our data set of proteins with disordered regions longer
than 30 consecutive residues was derived from a previ-
ously described data set.24 Briefly, reports on disordered
regions identified by NMR, circular dichroism, or protease
digestion were located by keyword searches of PubMed
(http://www.ncbi.nlm.nih.gov/entrez). Additionally, start-
ing from PDB_Select_25,25 a nonredundant subset of the
Protein Data Bank (PDB),26 whose members have �25%
sequence identity, we identified disordered regions in
X-ray crystal structures by searching for residues whose
backbone atoms are absent from the ATOMS list of their
PDB files.22 The resulting disordered data set, D_145,
contains 145 protein segments longer than 30 consecutive
residues with a total of 16,705 disordered residues. Of
these proteins, 35% are completely disordered, 16% dis-
play disorder at their C-terminal ends, 30% at their
N-terminal ends, and 17% at regions internal to the
chains.

To provide a representative data set of ordered proteins
necessary for training predictors of protein disorder, we
extracted a set of 130 nonredundant proteins that are
completely ordered from their N- to C-termini (O_130).
This data set with a total of 32,506 residues was also
extracted from PDB_Select_25. To measure the false-
positive prediction rate of the various predictors, an addi-
tional database O_PDB_S25 of ordered protein segments
was constructed from PDB_Select_25 by deleting all the
residues lacking backbone coordinates.

Several other databases were used for the analysis of the
resulting partitions of disordered protein regions and the
corresponding specialized predictors. These include the
amino acid sequences of known and putative proteins
obtained for complete or mostly complete genomes of 28
organisms (http://www.ncbi.nlm.nih.gov/Entrez/query.
fcgi?db�genome) and the 80,000 amino acid sequences
obtained from release 38.00 of the SwissProt database.27

Data Representation and Attribute Selection

In this study, order/disorder properties at a given posi-
tion in a sequence are predicted using a subsequence
within a window of size Win. Because the amount of
information about disordered proteins is rather limited, in
accordance with previous work,24 only first-order statistics
of the 20 amino acids within a given window were used as
attributes to prevent the “curse of dimensionality.”28 For
example, attribute XA at a given position is calculated as
the fraction of amino acid A (ALA or Alanine) within a
window. It is worth noting that such representation in-
cludes residues at the N- and C- termini of the protein.
This simplistic approach is further validated by results
known about the incompressibility of protein sequences,29

showing that it can be very difficult to extract relevant
higher-order statistics from protein sequences.

A measure of sequence complexity called Shannon’s
entropy30 provided another attribute. When measured
over a window specified length, Shannon’s entropy is given
by K2 � �¥i � 1

N fi log2 fi, where N � 20, corresponding to
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the 20 amino acids, and where fi is the fraction of the ith
amino acid in the window (and where 0 log20 is defined to
be zero). Very low complexity sequences are almost always
disordered, whereas high complexity sequences can be
ordered or disordered.24,31

Prediction of Protein Disorder

A measure of prediction accuracy used here is the
average between the percent of true positives (disordered
positions predicted to be disordered) and true negatives
(ordered positions predicted to be ordered). With this
convenient measure, ordered and disordered predictions
are valued equally regardless of the balance of the data
and a higher value indicates a better predictor. If a
balanced dataset with the same number of ordered and
disordered examples is used for training and testing, then
each result above 50% indicates that the predictor is better
than a random guess.

Among a range of alternative machine learning algo-
rithms we considered ordinary least squares (OLS), logis-
tic regression (LR), and neural networks (NN) to build
disorder predictors. OLS and LR32 are linear predictors,
where OLS is suited for regression and is extremely fast to
run, whereas LR is suited for binary classification and
requires a slower (one order of magnitude) iterative param-
eter fitting procedure. NN are known as universal approxi-
mators, capable of discovering highly nonlinear relation-
ships,33 but they require abundant data, have relatively
slow training, and are sensitive to the initial conditions
and training procedures.

Regardless of the choice of disorder prediction algo-
rithm, the final prediction accuracy could be further
improved by exploiting a specific feature of the prediction
task, namely, prediction of long disordered regions (�40
residues. Note: our training set contained disordered
regions �30 residues, but �40 residues was used for
prediction of long disordered regions to be on the conserva-
tive side.). If a predictor indicates that most residues in a
certain region of a protein are likely to be disordered, then
the whole region is likely to be disordered. The opposite
holds as well. Therefore, this simple reasoning can facili-
tate correcting the prediction of apparently misclassified
residues. In this study, we used a simple procedure for
such correction by averaging predictions over a window of
size Wout, and we validate this approach in the implemen-
tation section.

Algorithm for Discovering Flavors of Protein
Disorder

The proposed algorithm uses an assumption that special-
ized disorder predictors built on different flavors of protein
disorder should have significantly higher accuracy on their
own flavor than a global or other specialized disorder
predictors. Starting from this assumption, we constructed
an algorithm that partitions a set of disordered proteins
into flavors through a competition of specialized predictors
for disordered proteins. If a given set of disordered pro-
teins S0 is partitioned into L disjoint subsets, the corre-
sponding data subsets are denoted as Si, i � 1,…,L, and
the whole partitioning as SL � {S1,…,SL}. By Mi we denote

TABLE I. Algorithm for Discovery of Protein Disorder Flavors and Its Competition Procedure
Algorithm for discovering protein disorder flavors

● Train a single predictor using all disordered proteins S0 and calculate its accuracy.
● Split S0 into S2

0 � {S1,2
0, S2,2

0}, where S1,2
0 and S2,2

0 are disjoint and of equal size.
● Modify S2

0 through the competition procedure and calculate the overall accuracy achieved by the obtained partitioning S2 � {S1,2, S2,2}.
● Terminate the algorithm if the accuracy is not improved. There are no disorder “flavors”
● L � 2.
repeat

for i � I to L
● Split Si,L into two disjoint subsets of the same sizes, Si,L� and Si,L	, to obtain the initial partitioning SL�1,i

0 � {SLSi,L, Si,L�, Si,L	}.
● Modify SL�1,i

0 through the competition procedure and calculate the overall accuracy of the resulting partitioning SL�1,i.
end

● Out of L options, SL�1,i, i � 1, . . . L, choose the partitioning achieving the highest overall accuracy to represent the new partitioning,
SL�1 � {S, L�1, . . . SL�1, L�1}.

● L4L � 1
until there is no improvement in accuracy
Output: L � 1 “flavors” defined by partitioning SL�1.

Competition procedure

Start from a partitioning into L subsets SL
0 and set n � 0.

repeat
for each disordered protein j

● Train L models Mi, i � 1, . . . L, using the L subsets of SL
n, Si

n, i � 1, . . . L, excluding disordered protein j.
● If Mi gives the best accuracy on disordered protein j assign this protein to subset Si

n�1.
end

● Form a new partitioning, SL
n�1 � {S1

n�1, . . . SL
n�1}.

● n4n � 1
until convergence to a stable solution
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a specialized predictor built using examples of disorder
from Si and the same number of examples taken randomly
from the ordered dataset O_130 to provide a balanced
training data set.

The algorithm (formally described in Table I) starts by
fitting a global predictor on a balanced data set containing
examples from all disordered proteins. Next, disordered
proteins are divided randomly into two disjoint subsets
S1,2

0 and S2,2
0 of equal size and two separate predictors are

trained using each of them. Data sets for both predictors
are also balanced with the same number of residues from
O_130. The two predictors are then applied on each
disordered protein. All disordered proteins where the first
predictor achieved higher disorder prediction score are
assigned to subset S1,2

1 , whereas the rest are assigned to
subset S2,2

1 . The competition procedure is iterated until a
stable partitioning S2 is obtained. The competition proce-
dure is also described in Table I. Subsequently, the quality
of the resulting partitioning S2 is measured as the overall
accuracy explained below. If there is no accuracy improve-
ment as compared to the global predictor, the algorithm is
stopped and it is concluded that all disorder is similar.
Otherwise, the algorithm proceeds by partitioning disor-
dered proteins into three subsets in an attempt to further
improve the accuracy.

The third predictor is added to the competition in a
tree-like manner as described in Table I. Starting from a
partitioning into S1,2 and S2,2, subset S1,2 is split into two
equal size disjoint subsets, whereas S2,2 is left intact. The
competition of three predictors starting from such a parti-
tioning is performed and after converging to a stable
partitioning S3,1, the accuracy is calculated. Also, the same
steps are repeated by splitting S2,2 into two subsets and
leaving S1,2 intact to obtain S3,2. The quality of the better
of the two partitions (denoted as S3) is compared to S2. The
procedure continues by adding new predictors into the
competition until it is concluded that further partitioning
does not improve accuracy. The partition that gives the
best overall accuracy is accepted as the final partition of
disordered proteins into the disorder flavors. The resulting
specialized predictors are named the flavor predictors.

The quality of each partition S is measured as the
overall accuracy using leave-one-protein-out validation on
each subset. Namely, after each competition step, the
following procedure is repeated for each disordered pro-
tein. If a given protein is assigned to subset Si, a predictor
is trained on a balanced set using the remaining disor-
dered proteins from Si and the accuracy of that predictor is
measured on the selected disordered protein. The overall
accuracy is calculated as the average accuracy over all
disordered proteins. Therefore, for n disordered proteins in
the whole data set, calculation of the overall accuracy
required training n predictors.

Although convergence properties of the proposed algo-
rithm were not analyzed theoretically for partitioning of
disordered proteins, our results from similar partitioning
algorithms specialized for nonstationary time series34 and
spatial data35 showed that the competition procedure

converges to local optimum and that the convergence is
expected to be fast.

Experimental Design
Choice of attributes and data set size

Because the sum of 20 attributes representing amino
acid frequencies within a window is one, to prevent
co-linearity one attribute should be excluded from the data
set. We removed attribute XM representing the frequency
of methionine within a window, because our previous
studies indicated that it is not important for disorder
prediction. The 19 remaining compositional attributes and
sequence complexity were retained because, although some
of them might not be important for a global disorder
predictor, they could influence some of the specialized
disorder predictors.

To improve the speed of the partitioning algorithm and
to use the fact that neighboring examples tend to be
correlated, only 20 examples were randomly included in a
training set from each of the D_145 proteins regardless of
the protein’s length. Thus, the data set used in partition-
ing had a total of 2900 examples of protein disorder.
Furthermore, such data reduction allowed each disordered
protein to have the same importance on the partition
procedure.

Choice of specialized predictors

OLS, LR, and neural network predictors were all com-
pared for overall accuracy in predicting order and disorder.
Accuracies of the predictors shown in Table II were
obtained with leave-one-protein-out validation on the
D_145 and O_130 data set using the window of size Win �
41. The time presented is that needed to train one predic-
tor on a complete training data set with 2900 ordered and
2900 disordered 20-dimensional examples as implemented
in Matlab on a 700-MHz NT-based computer with 256 MB
memory. Neural networks had five hidden neurons and
were trained for 100 epochs with a resilient backpropaga-
tion algorithm.36 The requirement for the partitioning
algorithm was to provide sufficiently accurate partitioning
in a reasonable time. Because OLS proved to be the fastest
prediction method with overall prediction accuracy close to
the other two methods, it was chosen for specialized
predictors in the partitioning algorithm.

Choice of window size

The window size used for attribute construction in this
study was Win � 41, because this size has better overall

TABLE II. Comparisons of Time Needed to Train a
Predictor and its Accuracy

for Three Methods

Predictor Time[s]

Accuracy (%)

Disorder Order Average

OLS 0.6 71.5 84.3 77.8
LR 15.9 74.1 81.9 78.0
NN 45.4 74.0 
 2.4 82.1 
 1.5 78.1 
 2.0
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accuracy than windows of size 21 used previously23 or
windows of size 81 (Table III).

Postprocessing

Averaging the outputs over a window of size Wout � 41
proved very useful. The overall accuracy of the linear
predictor was improved by almost 3 to 80.5% (last row of
Table III). Because such postprocessing does not influence
the competition procedure of the partitioning algorithm, it
was not used in the disorder flavor discovery algorithm.
However, it was used later to allow more successful
analysis of disorder flavors on a number of out-of-sample
protein databases.

Number of experiments

Preliminary analysis revealed that there is a fairly
small difference in accuracy between competing predictors
on D_145 proteins. As a consequence, the final partitioning
is dependent on random initial splits in the competition
procedure, and the overall accuracy can vary slightly. The
sensitivity to initialization is a common property of cluster-
ing algorithms with iterative refinements and could be
explained by the presence of local optima in the space of
possible solutions.37 The standard approach to addressing
this problem is repeating the experiment a number of
times with different random initializations and selecting
the best partitioning according to the defined quality
measure. In this study we were interested in partitioning
of disordered proteins into high-quality flavors, without
the need for a brute-force exhaustive search over all
possible partitions of D_145 proteins. Therefore, we re-
peated our partitioning algorithm with 20 different initial-
izations, and performed an in-depth analysis of the best
resulting partitioning.

RESULTS
Results of the Partitioning

In each of the 20 experiments we applied the proposed
algorithm to partition D_145 proteins into 6 subsets. In
Table IV we show the minimum and the maximum overall
accuracies achieved over 20 experiments for the number of
subsets ranging from two to six. We also report the
bootstrap estimate of the 90% confidence interval for the
overall accuracy of the best run of the algorithm. It was
calculated based on the 1000 bootstrap replicates of 145
accuracies measured on D_145 proteins. Relatively wide
confidence intervals are a consequence of a relatively small
number of disordered proteins in our data set.

Partitioning into two or three subsets by the best of 20
experimental runs improved the overall accuracy by 4.4
and 12.9%, respectively, compared with the accuracy of a
global model with 71.5% accuracy. Further partitioning
into 4 and 5 subsets resulted in just a slight accuracy
improvement by 0.5 and 0.8%, respectively. The accuracy
resulting from 6-subset partition decreased slightly as
compared to that from a 5-subset partition. Considering
the size of the 90% confidence intervals for the overall
accuracy and based on the principle of Occam’s Razor,
commonly interpreted in machine learning as “the sim-
plest explanation of the observed phenomena is most likely
to be a correct one,” we concluded that partitioning into 3
subsets by the best run of our algorithm provides the most
reasonable solution. Therefore, we concluded that at least
3 flavors exist among the 145 disordered proteins in our
data set, where the more definite answer should probably
await the significant enlargement of the disordered pro-
tein data set.

We denoted the 3 subsets of partitioned proteins as
disorder flavors V, C, and S (the data are available at
www.ist.temple.edu/disprot), and the corresponding predic-
tors as the flavor predictors VL-2V, VL-2C and VL-2S.
Single-letter designations were used for convenience, and
the choice of V, C, and S was mostly arbitrary. The global
predictor was denoted as VL-2 to distinguish it from the
first generation predictor VL-1, which was trained on a
small number of disordered regions.

An important consideration of our approach is the
sensitivity of our algorithm to the random initialization.
From Table IV it can be seen that the difference between
the worst and the best among the 20 runs was �3%,
indicating a moderate influence of initialization on the
overall accuracy of partitioning. To estimate the stability
of the partitioning over N runs of the algorithm we define a
stable protein as the protein that has the same assignment
over all of the N runs with at least another protein. If the
partition of D_145 proteins into 3 subsets by the algorithm
were completely random, an expected number of stable
proteins over N runs would be 145(1 � (1 � (1/3)N)144). For
N � 5, 10, and 20 this number equals 64.9, 0.35, and 6 �
10�6, respectively. Partitioning of D_145 proteins into 3
subsets in the first 5 and 10 and in all of the 20 runs of our
algorithm resulted in 119, 95, and 61 stable proteins,
respectively. A sizeable core of stable proteins indicates
that the algorithm is fairly robust to random initializa-
tions. It is also evident that there exist proteins on which
all three specialized predictors achieve comparable accu-
racy and whose membership into one of the 3 subsets is
unstable.

Initial Characterization of the Flavors and Flavor
Predictors

To compare the obtained 3-flavor partitioning to chance,
we generated 1000 random partitions of D_145 disordered
proteins into three subsets. The overall accuracy of the
predictors derived from the random partitions was only
68.5 
 2.1%, which was more than one standard deviation
less than the 71.5% (Table IV) observed for the global

TABLE III. Accuracies of OLS Predictors Comparing
Different Windows for Data Representation (Win) and for

Output Averaging (Wout)

Win Wout

Accuracy (%)

Disorder Order Average

21 1 67.7 80.3 74.0
41 1 71.5 84.3 77.8
81 1 68.7 85.4 77.1
41 41 72.6 88.3 80.5
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predictor. Furthermore, since 84.4% (Table IV) is more
than 7 standard deviations greater than 68.5%, the ob-
tained 3-subset partitioning is very unlikely to be due to
chance. Note further that the random variation of 2.1% is
much greater than the 0.5% improvement observed for 4
versus 3 subsets and much less than the 8.5% improve-
ment of 3 versus 2 subsets, which provides further support
for the choice of the 3-subset partitioning.

Table V compares the accuracy of the global predictor
and the three flavor predictors on the ordered and disor-
dered data sets. The accuracy of each flavor predictor on
the ordered data set ranged from 81 to 86%, whereas
accuracy on their corresponding disorder flavors ranged
from 83 to 87%. Comparison with the global predictor VL-2
shows that partitioning resulted in a significant increase
in accuracy on disordered residues while keeping accuracy
on ordered residues almost unchanged. The global predic-
tor does not approach the accuracy of each flavor predictor
on its own data set, and each flavor predictor has higher
accuracy on its own flavor and substantially lower accu-
racy on the other flavors.

Compositional Analysis of Disorder Flavors

Our next goal was to determine a set of important
attributes for the global and flavor predictors. We used the

t-statistics of linear regression parameters obtained using
OLS as a measure of attribute importance. In Table VI, we
show the most influential attributes (sorted by decreasing
importance) for the global and 3 flavor predictors. Only
attributes with t-statistics whose absolute values are
greater than 7 are shown where bold attributes have
t-statistics � 14. As evident from the results, there are
significant differences between the flavor predictors, with
VL-2S exhibiting the most resemblance to the global
predictor. In general, the amino acids that are most
influential for each predictor are the more hydrophobic
ones. K2 entropy is the most important attribute for the
VL-2 and VL-2S predictors, moderately important for
VL-2C, and not very influential for VL-2V.

In general, the attributes that are most influential to
each predictor reflect the characteristics of the various
sequences used to train the predictors. The average K2

entropy for the O_130 proteins was 3.72 and for D_145 was
3.39. The flavor S proteins had the closest average K2,
3.38, to D_145 and the flavor V had the closest average K2,
3.51, to O_130. These values closely reflect the influence of
K2 in predicting disorder. The average K2 for flavor C was
lowest at 3.24.

All of the predictors are most heavily influenced by the
presence of the most hydrophobic residues. The amino acid
compositions for each disorder flavor relative to the compo-
sitions for order are shown in Figure 1. Amino acids in the
figure are sorted in ascending order by the “flexibility”
scale of Vihinen and co-workers.38 This scale relates more
to the tendency of an amino acid to be buried (to the left) or
to be exposed (to the right) than it does to inherent
flexibilities of the various amino acids. Each bar repre-
sents the ratio (Pj

D � Pj
O)/Pj

O, where Pj
D is the proportion of

amino acid j in the subset of disorder and Pj
O is the same

proportion in order. Values higher than 0, for example,
indicate that the amino acid is found more often in
disordered proteins than in ordered proteins. Similarly,

TABLE VI. Most Influential Attributes, in Decreasing
Importance, for VL-2 and for Each of the

Three Flavor Predictors

PONDR Most influential attributesa

VL-2 K2, XY, XW, XI, XF, XV, XL, XA
VL-2V XW, XA, XL, XV, XY, XN
VL-2C XF, XL, XI, XD, K2, XC, XY, XH
VL-2S K2, XY, XI, XW, XA, XF, XG, XH, XV

aK2 is Shannon’s entropy and XA is the frequency of the amino acid A
in a window of size 41.

TABLE IV. The Overall Accuracy of the Partitioning Algorithm as a Function of the Number of Subsets, Starting
from a Global Model

Number of subsets 1 2 3 4 5 6

Range over 20 runs [%] 71.5 [74.7, 75.9] [82.3, 84.4] [82.7, 84.9] [83.4, 85.2] [83.4, 84.8]
Best run 90% CI [%] [67.1, 75.9] [72.3, 79.5] [81.2, 87.6] [81.8, 87.9] [82.2, 88.1] [81.9, 87.8]

Range over 20 runs are minimum and maximum overall accuracies over 20 runs of the algorithm. The Best run is the bootstrap
estimate of 90% confidence interval of the overall accuracy of the best among 20 runs of the algorithm.

TABLE V. Accuracy of Each of the Three Flavor Predictors (VL-2V, VL-2C, VL-2S)
and the Global Model (VL-2) on the Three Disorder Flavors and on the D_145

and the O_130 Data Sets

Data set No. of proteins No. of Residues

Predictor (% accuracy)

VL-2 VL-2V VL-2C VL-2S

O_130 130 32,506 84.3 81.5 85.7 85.8
D_145 145 16,897a 71.5 64.5 52.9 63.0
Flavor V 52 7,743a 67.1 83.1 30.2 49.3
Flavor C 39 3,402a 71.5 51.3 83.2 47.4
Flavor S 54 5,752a 75.6 56.1 40.1 86.9
aDisordered residues only.
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values below 0 indicate the amino acid is less common than
in ordered proteins.

Figure 1 clearly elucidates the differences between the
disordered protein and the ordered protein as well as
differences among the three flavors. Disordered proteins
have fewer of the amino acids that tend to be buried and
more of the most flexible amino acids. The proteins that
determine each of the flavors have slight differences in
their compositions relative to each other. Thus, Flavor C
has more histidine (H), methionine (M), and alanine (A)
than is usually found in either ordered protein or the other
two flavors. Flavor S has less histidine than the other
flavors and ordered protein, and Flavor V has more of the
least flexible amino acids (C, F, I, Y) than the other
disorder flavors.

The difference among the distributions of the three
disorder flavors and order can be compared statistically as
well as graphically. Results on the incompressibility of
protein sequences29 indicate that it is very difficult to
extract Markovian dependence of higher order in protein
sequences. As a consequence, protein sequences can, at
least as a first approximation, be considered as random
samples taken from some distribution. One commonly
used statistic to test the hypothesis that two samples S1

and S2 are from the same distribution is the D statistic
defined as

D �
n1n2

n1 � n2
�

j � 1

20
�Pj

�1
 � Pj
�2

2

Pj
�12
 ,

where n1 and n2 are the number of examples from both
samples, Pj

(1), Pj
(2), and Pj

(12), are frequencies of amino acid j

in both samples and in the joint sample, S1 � S2. In Table
VII we show values of D-statistics between the three
flavors of the disordered residues and the ordered resi-
dues. To validate that the D-values are significant, we
constructed 1000 random partitions of the 145 disordered
proteins into 3 subsets and calculated the D-statistic for
each partition. Our results showed that 95% of the D-
statistics for the random partitions were smaller than 189.
From this experiment, we can estimate p-values for the
compositional difference between the pairs of disorder
flavors; these are given in parentheses in Table VII.

Note that the D-values indicate that all three of the
disorder flavors are very different from ordered proteins.
Also, Flavor C seems to be more different than the other
two flavors, whereas flavors V and S are more similar to
each other, except with regards to sequence complexity,
K2.

Flavors Versus Characterization Method and
Location

There are interesting differences among the three fla-
vors in the distribution of disordered regions by character-

Fig. 1. Comparison of amino acid compositions of three disorder flavors with the composition of order. Error
bars are one standard deviation.

TABLE VII. D Statistics for the Difference between Amino
Acid Distributions of the Three Disorder Flavors and

Ordered Proteins

Flavor C Flavor S Order

Flavor V 476 (�10�3) 184 (0.06) 755
Flavor C 428 (�10�3) 708
Flavor S 527

P-values in the parentheses correspond to hypothesis tests that the
amino acid compositions between flavors are identical.
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ization method and by location (Table VIII). NMR charac-
terized disorder is fairly evenly distributed among the 3
flavors; there is more CD and proteolysis characterized
disorder in Flavor V and more X-ray disorder in Flavor S
than if the characterization methods were randomly di-
vided among the 3 flavors. These results are correlated
with the location of the disordered regions. Flavor V has
more completely disordered proteins than expected be-
cause of the greater fraction of CD characterized proteins,
which tend to be characterized as complete proteins. The
greater number of X-ray derived disordered regions in
Flavor S is reflected by the smaller number of completely
disordered proteins in this flavor. Interestingly, Flavor C
has far fewer internal regions of disorder than the others.
The differences in the distributions of characterization
method and disorder location are significantly different
among the flavors (df � 4, � � 0.05, �2 � 11.07; df � 6, � �
0.005, �2 � 18.5, respectively).

Extended Versus Collapsed Disorder

The protein trinity hypothesis proposes that native
proteins exist in 3 forms: ordered, extended, and col-
lapsed.14 Limited comparisons suggested that the ex-
tended disorder exhibited a lower sequence complexity, a
higher net charge, and a reduced overall hydrophobicity
compared with collapsed disorder. To determine whether
extended versus collapsed disorder might be separated in
the V, C, and S partitions, comparisons of these three
properties for the ordered protein set and the three
disordered subsets were determined (Table IX). Flavors V
and C appear to fit the suggested description of extended
disorder. However, complexity, net charge, and hydropa-

thy did not exhibit statistically significant separation
among V, C, and S, suggesting that the flavors could not
clearly distinguish between extended and collapsed disor-
der.

Disorder Flavor-Function Relationships

We have carried out a preliminary evaluation of flavor-
function relationships for the V, C, and S flavors (Table X).
Not all regions of disorder have known functions. For
instance, the functions of the N-terminal disordered re-
gions of DNA lyase39 and phosphatidyl-inositol phosphate
kinase40 are not known. This does not mean that these
regions have no function, simply that they have not been
sufficiently studied. For the disordered regions for which
we were able to determine function, some interesting
patterns were evident (Table X). Over half of the disor-
dered regions that bind to other proteins partition into
flavor S. Of the 10 ribosomal proteins from Escherichia coli
that were shown to be completely disordered by circular
dichroism,41 9 partition into flavor V. These proteins
function as structural mortar, interacting with each other
and the ribosomal RNA to maintain the structure of the
ribosome. Disordered proteins that bind to the genomic
RNA of viruses, however, were not found in flavor V. Few
of the DNA binding proteins partitioned into flavor V
either.

Because the proteins in D_145 with sufficiently confi-
dent estimates of disorder function represent a limited
sample from the distribution of disorder in nature, we also
used flavor-specific predictions to assess flavor-function
relationships. We extracted predictions for various protein

TABLE VIII. Frequency of Characterization Method and Location of Disorder in
Proteins for Each of the Three Flavors

Flavor V Flavor C Flavor S

N
Percent of

flavor N
Percent of

flavor N
Percent of

flavor

X-ray 11 21 15 39 27 49
NMR 12 23 11 29 12 22
CD and other 29 56 12 32 16 29
Completely disordered 26 50 11 29 10 18
Internal disorder 12 23 3 8 11 20
N-terminal disorder 10 19 16 42 23 42
C-terminal disorder 4 8 8 21 11 20

TABLE IX. Comparisons of Sequence Complexity, Net
Charge, and Hydropathy Properties

Sequence
Complexitya Net Chargeb Hydropathyc

Order 3.7 
 0.2 �2 
 4 �0.3 
 0.2
Flavor V 3.6 
 0.4 3 
 13 �0.9 
 0.5
Flavor C 3.3 
 0.4 0 
 15 �0.8 
 0.6
Flavor S 3.4 
 0.3 �2 
 16 �0.7 
 0.5
aResults for K2 entropy calculated over windows of 41 residues.
bPer 100 residues.
cIn the hydropathy scale62, hydrophilic is negative, hydrophobic is
positive.

TABLE X. Functions of Disordered Regions Partitioned
into Flavors V, C, and S

Function of disorder

Flavor

V C S

DNA binding 3 7 6
Genomic RNA binding 0 2 1
Metal binding 5 4 3
Modification sites 4 8 3
Protein binding 12 7 25
Ribosomal proteins 9 1 1

Only functions represented by at least 3 of the D_145 proteins are
shown.
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domains from the SwissProt database. The VL-2V predic-
tor gave strong predictions of disorder for nuclear localiza-
tion signals. VL-2V also gave the strongest disorder predic-
tions of the three predictors for helical regions. We have
shown previously that disordered domains that become
ordered helices upon binding to other proteins are composi-
tionally distinct from other types of disorder.42 Both
VL-2V and VL-2S strongly predict transactivating do-
mains as disordered. This coincides with the large number
of protein-binding regions that are disordered in flavor V
and flavor S. The VL-2S predictor strongly predicted
disorder in leucine-rich domains, but not leucine zippers.
The VL-2C predictor gave strong predictions of disorder
for poly- and oligosaccharide binding domains.

Therefore, although the flavor partition was based exclu-
sively on sequence statistics, we conclude that significant
differences exist in disorder function between flavors V, C,
and S. This holds both for known functional assignments
of D_145 proteins as well as for the functions of SwissProt
proteins predicted to have long regions of disorder.

Commonness of Disorder Flavors in SwissProt and
Various Genomes

In order to study the prevalence of disorder in various
databases and genomes, we developed a method for conser-
vatively estimating the proportion of proteins with long
disordered regions. The thresholds of the predictors were
adjusted to values that resulted in 5% false-positive per-
residue error rates on O_PDB_S25, where it is known with
reasonable confidence that all proteins are ordered. All of
the following results include the postprocessing step,
averaging predictions within a window Wout � 41.

Our first goal was to estimate how common each flavor is
in nature, as represented by 80,000 sequences from
SwissProt (release 38.0). Using the conservative esti-
mates, VL-2V and VL-2C predict that 22% of proteins in
SwissProt have long regions of disorder, and VL-2S pre-
dicts 28% (Table XI). The results on the SwissProt data-
base indicate that all three disorder flavors occur fre-
quently in nature, with a similar relative abundance. For
comparison, the first two rows of Table XI indicate the
maximum false-positive rate (O_PDB_S25) and the mini-
mum true-positive rate (D_145). With the false-positive
per-residue error rate set to approximately 5% per predic-
tor, the relatively small true-positive rate indicated by the
accuracy on the D_145 data set clearly suggests that the
abundance of disorder in SwissProt is underestimated.

Figure 2 shows the overlap among the disorder predic-
tions for the three flavor predictors. A total of 43% of

proteins in SwissProt are predicted to have disordered
regions of length 40 or longer by at least one of the
predictors corresponding to 16% of the total residues. The
majority (66%) of these residues were predicted to be
disordered by only one of the three predictors, which is
another indication of important differences between the
discovered disorder flavors.

SwissProt is known to be a biased database, unrepresen-
tative of any individual genome. To obtain an alternative
perspective, our analysis was extended to 28 complete
genomes, where the disorder is scored as percentages of
proteins having predicted disordered regions of 40 or
longer (Table XII). By this measure, the amount of predicted
disorder is different for the 3 kingdoms. That is, the percent-
ages of proteins predicted to have long disordered regions by
at least one flavor predictor range from 26–51% in archaea,
to 16–45% in eubacteria, and to 52–67% in eukaryotes.

The most common disorder flavor also varies among the
genomes. Note that the abundance of predicted disorder
flavors varies considerably over different species and
kingdoms.

For example for 5 bacterial genomes flavor V is predicted
on �5% of the proteins, which is smaller than the 5% lower
bound on ordered O_PDB_S25 proteins. This is an indica-
tion that flavor V is either extremely underrepresented or
even missing in these genomes. At the other extreme,
�40% of eukaryotic proteins were estimated to have long
regions of flavor S.

Table XII also reveals a large amount of variability in the
relative abundance of the three disorder flavors across differ-

TABLE XI. Conservative Estimates of the Percent of
Proteins with Long Regions of Disorder of Each Flavor

Data Set

Proteins predicted to have long disorder (%)

VL-2V VL-2C VL-2S
At least one

predictor

O_PDB_S25 7 6 6 16
D_145 58 77 69 72
SwissProt 22 22 28 43

Fig. 2. Venn Diagram showing overlap in predictions of flavor predic-
tors on the SwissProt database. Numbers represent the distribution of
mono-flavors (V, C, S) and mixed-flavors (VC, VS, CS, VCS) within all
SwissProt residues predicted to be disordered by at least one flavor
predictor.
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ent species and kingdoms. The archaea, except A. pernix, are
clearly biased toward flavor V, whereas all 4 eukaryotes are
biased toward flavor S. Although eubacteria are mostly
biased toward flavor S (with 12 of the 18 species), 4 eubacte-
ria have affinity toward Flavor C and 2 toward flavor V.

DISCUSSION
Partitioning Sequences by Amino Acid
Composition

Because the helix, sheet and other structural classes of
ordered protein can be predicted from amino acid composi-
tions, we were motivated to determine whether disorder
types, or flavors, could likewise be identified by composi-
tional differences. Unlike ordered protein, however, the
membership of a given region of sequence in a specific
disordered grouping is not known beforehand.

A straightforward approach for identifying different
types of disorder would be to perform hierarchical, k-
means, or some other type of clustering43 that cluster the

data based on their representation in the attribute space.
However, clustering is effective only on data with a
relatively small set of relevant attributes. In the case of
protein disorder, the attributes constructed on D_145 have
different levels of relevance to protein disorder (as can
seen from Figure 1). Applying off-the-shelf clustering
algorithms on such data could result in clusters with low
biological significance.

In the current work, we developed a novel algorithm
that partitions disordered proteins as a result of the
competition between specialized disorder predictors for
disordered proteins. This algorithm resembles the class of
the expectation-maximization algorithms44 by its iterative
improvement of the partitions and their corresponding
specialized predictors and by its overall goal of maximizing
the accuracy of the specialized predictors. A novel aspect of
our algorithm is the use of examples of protein order in
partitioning disordered proteins through construction of
specialized disorder predictors. This resolves the problem

TABLE XII. Conservative Estimates of the Percent of Proteins with Long Regions
of Disorder of Each Flavor for 28 species

Kingdom Species

Proteins with long disorder[%]

VL-2V VL-2C VL-2S
At least one

predictor

Archaea Methanococcus jannaschii 20 5 9 26
Pyrococcus horikoshii 19 6 13 30
Pyrococcus abyssi 23 8 11 31
Archaeoglobus fulgidus 20 9 13 31
Methanobacterium thermoautotrophicum 30 10 22 44
Aeropyrum pernix 15 31 26 51

Average for Archaea 21 12 16 36

Bacteria Rickettsia prowazekii 6 2 11 16
Ureaplasma urealyticum 6 3 15 20
Haemophilus influenza 8 9 11 21
Synechocystis sp. 7 10 14 23
Mycoplasma genitalium 7 4 20 24
Campylobacter jejuni 7 3 19 24
Vibrio cholerae 6 13 14 25
Borrelia burgdorferi 7 2 22 26
Bacillus subtilis 16 10 12 27
Xylella fastidiosa 7 17 13 28
Helicobacter pylorl 14 6 20 28
Neisseria meningitidis 12 17 10 29
Chlamydia pneumoniae 13 9 22 29
Chlamydia trachomatis 10 9 25 31
Mycoplasma pneumoniae 9 15 26 31
Thermotoga maritime 26 6 18 36
Treponema pallidum 12 22 20 38
Mycobacterium tuberculosis 7 38 14 45

Average for Bacteria 10 11 17 28

Eukaryotes Caenorhabditis elegans 32 26 42 52
Saccharomyces cerevisiae 31 24 51 58
Arabidopsis thaliana 32 27 53 62
Drosophila melanogaster 38 46 53 67

Average for Eukaryotes 33 31 50 60

Overall Average 16 14 21 34

Within each kingdom, species are sorted according to increasing commonness of disorder.
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of irrelevant attributes—they are not used by the special-
ized disorder predictors and, therefore, do not influence
the partitioning.

Our experiments were performed on a relatively small
data set of 145 disordered proteins. As a consequence, it
was difficult to distinguish the difference between the
quality of partition of disordered proteins into 3, 4, 5, or 6
subsets (see Table IV). It is expected that future enlarge-
ments of our disorder database will lead to better insight
into the variability of protein disorder and allow more
accurate estimation of the number of disorder flavors.
Additionally, with an enlarged database, using nonlinear
predictors in our algorithm is likely to result in higher
quality flavors.

In the absence of prior knowledge, we made the simplifi-
cation that each disordered region contained just one
flavor. The results do not fully support this simplification.
Many of the disordered regions appear to be better de-
scribed as having multiple flavors. One example would be
a disordered region that could be described as C-V-C,
meaning that VL-2V has the most confident prediction in
the middle of the region, while VL-2C has the most
confident prediction at its ends. Such multiflavor disor-
dered regions probably contribute to the sensitivity of the
partitioning to the initialization. By relaxing the simplifi-
cation of one flavor per disordered region, improvements in
flavor discrimination and prediction accuracy may result.
Experiments are in progress to test this possibility.

Commonness of Intrinsic Disorder

Application of the three disorder predictors to a data-
base of protein sequences and to the predicted protein
sequences from the complete genomes of 28 species indi-
cates that the prevalence of disorder is likely greater than
previously estimated. Our current estimates (Table XII) of
the proportion of proteins with disordered regions longer
than 40 amino acids are 16–45% in bacteria, 26–51% in
archaea, and 52–67% in eucaryotes. These values are
larger than the corresponding previous estimates of 7–33%,
9–37%, and 35–51%, respectively.45

As suggested previously,45–47 the increased predictions
of disorder in eukaryota compared with the other king-
doms may be related to cell signaling and regulation. The
data in Table XII indicate more flavor S proteins in
eukaryota, and the data in Table X indicate that flavor S is
especially associated with protein-protein interactions,
which are often involved in signaling and regulation.
Thus, the present data support the previous suggestions
that intrinsic disorder is important for cell signaling.

Implications for Structural Genomics

The large fraction of proteins that are predicted to have
regions of disorder longer than 40 amino acids in length
suggests that the field of structural genomics48–50 must
consider prediction of disorder, or lack of structure, a
priority. The goal of structural genomics is to ascertain the
structures of proteins from complete genomes and then to
use these structures as intermediaries for determining
function. This venture includes both solving structures

experimentally and predicting structures from sequence.
Many experimental determinations of structure are ham-
pered by the presence of disorder. The accuracy of struc-
tural predictions will be reduced if the presence of disor-
dered protein is not taken into account.

Structural genomics must also consider disorder in
determining protein function. Understanding the relation-
ships between disorder flavor and protein function as
described herein shows promise for annotating functions
associated with disordered regions. Such an approach
would be complementary to the annotation of ordered
protein domains. Considerable improvement in the flavor-
function approach, however, will be needed before this
method becomes truly useful. Substantial enlargement of
the set of intrinsically disordered proteins with well-
characterized functions has the highest priority. More
data would enable several avenues for improving the
flavor-function approach. For example, preliminary inves-
tigations indicate that long regions of disorder can some-
times be divided into subregions that have different fla-
vors, so dropping the mono-flavor simplification used here
is likely to foster improvements. Following from the idea of
multiflavored regions, flavor-function relationships could
well involve a pattern of flavors rather than individual
flavor types, so for example, a multiflavored region such as
V-C-S might correlate with a particular function. In addi-
tion, for proteins with both ordered and disordered re-
gions, a determination whether certain disorder flavors
are found in association with particular folding classes
might provide novel insight regarding function for both the
ordered and disordered regions. Finally, additional im-
provements can be expected from the reverse of what was
done here, namely to form groups of disordered regions
that are associated with common functions and then to
determine whether function-specific disorder predictors
can be developed from these groups.

We welcome help with the task of enlarging our data-
base of intrinsically disordered proteins. A website, www.
ist.temple.edu/disprot, has been established for direct
deposit of sequence-function information on proteins that
are structurally characterized to have intrinsically disor-
dered regions.
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