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Abstract—Kernel Perceptrons are represented by a subset of 
training points, called the support vectors, and their associated 
weights. To address the issue of unlimited growth in model size 
during training, budget kernel perceptrons maintain the fixed 
number of support vectors and thus achieve the constant update 
time and space complexity. In this paper, a new kernel 
perceptron algorithm for online learning on a budget is 
proposed. Following the idea of Tighter Perceptron, upon 
exceeding the budget, the algorithm removes the support vector 
with the minimal impact on classification accuracy. To optimize 
memory use, instead on maintaining a separate validation data 
set for accuracy estimation, the proposed algorithm only uses 
the support vectors for both model representation and 
validation. This is achieved by estimating posterior class 
probability of each support vector and using this information in 
validation. The experimental results on 11 benchmark data sets 
indicate that the proposed algorithm is significantly more 
accurate than the competing budget kernel perceptrons and 
that it has comparable accuracy to the resource unbounded 
perceptrons, including the original kernel perceptron and the 
Tighter Perceptron that uses whole training data set for 
validation.      

I. INTRODUCTION 
HE invention of the Support Vector Machines [12] 
attracted a lot of  interest in adapting the kernel methods 
for both batch and online learning. Kernel perceptrons [5, 

7, 8, 9] are a popular class of algorithms for online learning. 
They are represented by a subset of observed examples, 
called the support vectors, and their weights. The baseline 
kernel perceptron algorithm is simple – it observes a new 
example and, if it is misclassified by the current model, adds 
it to the model as a new support vector. The popularity of 
kernel perceptrons is due to their ease of implementation, the 
ability to achieve quite competitive classification accuracy to 
the batch mode alternatives, and the existence of theoretical 
results characterizing their behavior. 

In addition to their appealing properties, kernel 
perceptrons often suffer from an unbounded growth in the 
number of support vectors with training data size. This, in 
turn, causes unbounded growth in training time and space 
needed to store the classifier. Such behavior is unacceptable 
in many practical online learning applications. To address the 
issue of unbounded growth in computational resources, a 

class of online kernel perceptron algorithms on a fixed budget 
has been developed. To maintain the budget, the proposed 
algorithms typically decide to discard one of the support 
vectors when the budget is exceeded upon addition of a new 
support vector. While there are theoretical guarantees for 
convergence of several budget kernel perceptron algorithms, 
their actual performance is often poor on noisy classification 
problems. 
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Among budget kernel perceptrons, the Tighter Perceptron 
algorithm [13] is one of the most successful in practice. It 
removes the support vector that has the minimal positive 
impact on the classification accuracy. To estimate the 
accuracy, the algorithm requires maintenance of an additional 
validation data set. When the validation set is large, Tighter 
Perceptron is able to achieve respectable classification 
accuracy. However, the existence of validation set also puts 
an increasing burden on training speed and memory. When, 
in order to decrease the budget, the support vector set is used 
both for model representation and validation, the accuracy 
decreases dramatically. The main reason for such behavior is 
that support vectors are a biased sample of training examples 
that were incorrectly classified. Therefore, support vectors 
are likely to contain an overwhelming amount of noisy 
training examples and could therefore provide quite 
misleading accuracy estimates. 

In this paper, we propose a new algorithm, called here for 
convenience the Tightest Perceptron, that manages to obtain 
highly accurate estimates of classification accuracy using 
exclusively the support vectors. To achieve this, a simple data 
summary is maintained along each support vector to estimate 
the posterior class probability for each support vector. During 
the validation, the expectation of the validation hinge loss is 
calculated based on the estimated class probabilities. The 
experimental results show that the proposed algorithm has 
impressive performance on 11 benchmark data sets.  

II. PROBLEM SETTING AND PREVIOUS WORK 
We study the online learning for binary classification. 

Online learning is performed in a sequence of consecutive 
rounds. On each round, the algorithm observes an example 
from the training set. An example is a pair (x, y), where x is an 
M-dimensional attribute vector and  is the 
associated binary label. The independent and identically 
distributed training set D is a sequence of examples (x

{ 1, 1}y ∈ + −

1, 
y1),...,(xN, yN) and can only be observed in a single pass.  

The classical perceptron algorithm [11] has the following 
training procedure. Initially, the prediction model f (x) is set to 
zero, f (x) = 0. In round t, the new example (xt, yt) is observed 
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and its label is predicted by the current model f (x) as 
sign( f (xt) ). If the margin of this example, defined as the 
product yt⋅ f (xt), is below threshold β = 0 (i.e. ( )t ty f x β≤ ), 
then weight αt = 1 is assigned to this example and the model 
is updated as ( ) ( ) t t tf x f x y x xα= + ⋅ . Each example added 
to the model is called the Support Vector (SV). If the example 
is correctly classified, its weight is set to αt = 0, and the model 
is thus not updated. 

Alternatively, the algorithm can also modify the current 
hypothesis by multiplying it with scalar φt ( ( ) ( )t t tf x f xφ= ). 
The standard parameter values of β = 0, αt = 1, and φt = 1 can 
be chosen differently, as was done in ALMA [7], ROMMA 
[9], NORMA [8] and PA [5] algorithms. In this paper, we will 
consider kernel perceptrons with the standard parameter 
values. 

The classical perceptron implies a linear decision function. 
It could be made nonlinear by using Φ(x) as attributes instead 
of x, where Φ is a nonlinear mapping of the original attribute 
space into the feature space. If there exists a kernel function k 
such that ( ) ( ) ( , )i ix x k x xΦ ⋅Φ = [1], the model f (x) can be 
represented as 

1 1
( ) ( ) ( ) ( , )N N

i i i i i ii i
f x y x x y k xα α

= =
= Φ ⋅Φ =∑ ∑ x

)}

 

and is denoted as the kernel perceptron. It is important to note 
that the kernel function k allows us to express the model in 
terms of the original attributes and avoid explicitly working 
in the potentially high (or infinite) dimensional feature space. 

A. Budget Perceptron Algorithms 
In spite of the powerful performance, kernel methods often 

suffer from an unbounded growth in the number of support 
vectors with training data. This creates serious problems in 
both training and testing phase because the time needed to 
compute f (x) and the space needed to store the model scales 
linearly with the number of SVs. In many practical online 
applications where a short feedback time and bounded space 
is a requirement, the unbounded growth mentioned above is 
not acceptable. This fact motivated work in developing online 
algorithms on a fixed budget.  

1) Fixed Budget Perceptron: The pioneering work was 
done in [4] to address the problem. There, a standard kernel 
perceptron was modified by adding a support vector removal 
procedure to keep the budget. Let us denote It as the set of 
support vectors at round t of the kernel perceptron algorithm. 
If the number of support vectors exceeds the predefined 
budget B in round t (i.e. |It|>B), support vector with the 
largest margin,  

({arg max ( ) ( , )
t

j j j j j j
j I

y f x y k x xα
∈

− ,            

is removed. While this algorithm achieves respectable 
accuracy on relatively noise-free data it is less successful on 
noisy data. This is because in the noisy case this algorithm 
tends to remove well-classified points and accumulate the 
noisy examples, resulting in degradation of accuracy.  

2) Random Perceptron: The simplest removal procedure is 
to remove a randomly selected support vector. Despite its 
simplicity, this algorithm often has satisfactory performance. 

In addition, the algorithm’s convergence has also been 
proven [2]. 

3) Forgetron: A more advanced removal procedure was 
developed in [6] by introducing a forgetting factor. After each 
update step, forgetting factor 10 << tφ  is used to scale the 
current model (and all its support vectors). The oldest support 
vector (with the smallest weight) is removed if budget is 
exceeded. The algorithm’s convergence has also been 
proven. 

4) Tighter Perceptron: [13] proposed to remove the 
support vector that has the smallest positive influence on 
accuracy. To allow accuracy estimation, an additional 
validation set composed of the previously observed training 
examples is maintained. Specifically, on the t-th round where 
|It|>B, the algorithm removes j-th support vector with  

( )( )0 1arg min ,sign ( ) ( , )
t t

k k j j j k
j I k V

l y f x y k x xα−
∈ ∈

⎧ ⎫⎪ ⎪−⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ,  

where Vt is the validation set and l0-1 denotes the 0-1 
classification loss.  
    From the perspective of accuracy estimation, it is ideal to 
use all the previously seen training examples for validation.  
However, the use of validation set puts an additional burden 
to the memory budget and the training time. Due to practical 
considerations, the size of validation data set should be 
restricted. There are several variants of the Tighter algorithm 
depending on the size of the validation set: TighterFull uses all 
training examples for validation, TighterA uses selected A 
examples that are disjoint from the support vectors, and 
Tighter0 uses support vectors. While TighterA and Tighter0 
are budget algorithms, their accuracy estimates are less 
reliable. That is especially the case for Tighter0 because the 
support vector set is a biased sample from training data that is 
likely to contain disproportionally large fraction of noisy 
examples. 

In the following section, a statistically-based method is 
proposed to improve accuracy estimation using only the 
support vector set.  

III. THE PROPOSED ALGORITHM 
The main property of the proposed algorithm is an 

improved accuracy validation using only the support vector 
set. The validation improvement is possible when posterior 
class probabilities of support vectors are used instead of their 
actual labels (as is done in Tighter0). The open problem with 
this approach is that posterior class probabilities of support 
vectors are unknown and should be estimated. Our idea is that 
a high-quality class probability estimate for each support 
vector can be obtained by looking at labels of training 
examples in its neighborhood. We call the resulting algorithm 
the Tightest Perceptron or Tightest, in short. 

The proposed algorithm is sketched in Figure 1. Instead of 
simply discarding the selected support vector or the new 
training point that does not become the support vector, we are 
using its class information to improve the class probability 
estimate of its nearest support vector. To implement the idea, 
the i-th SV is represented by tuple (xi, yi, ci

+, ci
−) containing its 
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attribute values xi, the original label yi, and counts ci
+ and ci

− 
that represent the total number of positive and negative 
training examples observed in its close neighborhood. As will 
be descried in III.A, these counts are used to estimate the 
posterior class distribution at xi. We denote the set of support 
vectors augmented by the counts with S.  

After initializing f(x) to zero and setting the augmented 
support set S to empty, examples from the training data are 
read sequentially. If the observed example is well classified, 
the current model is retained. Before discarding the example, 
UpdateSummary subroutine is used to update count of its 
nearest support vector. Instead of incrementing the count by 
one, we use the soft increment that is a function of kernel 
distance. In this way, larger weight is given to the labels of 
training examples closest to the support vectors. 

If a training example is misclassified, it is added to the 
current model, and S is updated accordingly. When the 
number of support vectors exceeds the budget B, | S | > B, the 
algorithm evaluates removal of each SV, selects the one 
whose removal introduces the least validation loss, and 
updates the model by removing it. Details of the selection are 
given in III.A. Before discarding the support vector, its 
counts are used to update the counts of its nearest support 
vector.  

A. Accuracy Estimation  
Given the support vector set S, the best support vector for 

removal is determined as the one with index 
)),()((minarg xxkyxflossr jjSj −= ∈ , 

where loss is defined as the expected accuracy loss on the 
support vector set,  

∑
∈

−−++ +=
Si

iiii lplp
S

xfloss )(
||

1))(( , (1) 

where pi
+ = P(yi = 1 | xi) and pi

− = P(yi = −1 | xi) are the 
posterior probabilities that xi is labeled as positive and 
negative, respectively. Quantity li

+ (or li
−) denotes the 

accuracy loss at xi assuming its class label is actually positive 
(or negative).  

Input: (x1, y1),...,(xN, yN), budget B 
Initialization: f(x) = 0,  S = ∅   
Output: f(x) 
 
for i=1 to N 

if  ( ) 0i iy f x ≤
f(x) = f(x) + yi k(xi,x) 
if yi=1 

{( , ,1,0)}i iS S x y= ∪  
else   {( , ,0,1)}i iS S x y= ∪
if | |  S B>
         arg min ( ( ) ( , ))j S j jr loss f x y k x∈= −

One choice of accuracy loss is the traditional 0-1 loss 
defined as li

+ = 1 if f(xi) < 0, and li
+ = 0 otherwise. A slight 

problem with 0-1 loss is that it could not distinguish between 
large and small errors, which can be important when 
validation data size is small. The alternative choice, 
implemented in our algorithm, is to use the hinge loss defined 
as li

+ = max(0,1−(+1)⋅f(xi)) and li
− = max(0,1−(−1)⋅f(xi)). 

We observe that, using the introduced notation, in Tighter0 
algorithm pi

+ = 1 and pi
− = 0 if yi = +1, and pi

+ = 0 and pi
− = 1 

if yi = −1, and that 0-1 loss is used for li
+ and li

−. 
The remaining issue is estimating value of pi

+ (observe that 
pi

− = 1 – pi
+) based on counts ci

+ and ci
− maintained by the 

algorithm. The maximum likelihood estimate pi
+ = 

ci
+/(ci

+ + ci
−) is unreliable when counts are small. Instead, we 

use the Bayesian approach where pi
+ is treated as a random 

variable whose prior has Beta distribution Beta(a+,a−), where 
a+ and a− are some positive values (typically set to 1). In this 
case, the posterior distribution of pi

+ has Beta distribution 
Beta(ci

+ + a+, ci
− + a−). Since we are treating pi

+ and pi
− as 

random variables, we need to modify the accuracy loss in 
equation (1) to 

∑
∈

−+++ −+=
Si

iiii lwlw
S

xfloss ))1((
||

1))(( , 

x
        f(x) = f(x) – yr k(xr,x) 

{( , , , )}r r r rS S x y c c+ −= −  
UpdateSummary(S, xr, cr

+, cr
−) 

else    
if yi=1  

UpdateSummary(S, xi, 1, 0) 
else  UpdateSummary(S, xi, 0, 1) 

 
 

Subroutine UpdateSummary(S, x, c+, c−) 
arg min || ||j S jk x∈= − x  

ck
+ = ck

+ + c+⋅ k (x ,  xk) 
ck

− = ck
− + c−⋅ k (x ,  xk) 

Fig 1. The pseudo code for Tightest 

(2) 

where wi
+ is calculated as  

.),|(1
5.0∫

−−+++ ++= dxacacxBetaw iii  

B. Complexity 
   The space requirement of the proposed Tightest perceptron 
is constant in training size and scales as O(B) with the budget 
B, because only B support vectors are maintained in the 
memory. Let us now consider the time complexity. The 
prediction for the new coming example takes O(B) runtime. 
With some bookkeeping (predictions of the current 
perceptron on each support vector should be maintained), the 
evaluation of accuracy loss after removal of a single SV 
requires O(B) time, and there are B+1 such evaluations. 
Finding the nearest neighbor in UpdateSummary subroutine 
costs another O(B). Therefore, the total runtime for an update 
is O(B2) and the total training time for a data set of size N is 
O(NB2). 
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IV. EXPERIMENTS 
In this section, we present results of detailed evaluation of 

the proposed Tightest perceptron on a number of benchmark 
datasets. 

A. Data sets 
Properties of 11 benchmark data sets for binary 

classification are summarized in Table 1. The multi-class data 
sets were converted to two-class sets as follows. For the digit 
datasets Pendigits and USPS we converted the original 
10-class problems to binary by representing digits 1, 2, 4, 5, 7 
(non-round digits) as negative class and digits 3, 6, 8, 9, 0 
(round digits) as positive class. For Letter dataset, negative 
class was created from the first 13 letters of the alphabet and 
positive class from the remaining 13. The 10-class MNIST 
data set was simplified to binary data by separating digit 3 
from digit 8. Class 1 in the 3-class Waveform was treated as 
negative and the remaining two as positive. For Covertype 

data the class 2 was treated as positive and the remaining 6 
classes as negative. Adult9, Banana, Gauss, and IJCNN were 
originally 2-class data sets. NCheckerboard data was 
generated as a uniformly distributed two-dimensional 4 × 4 
checkerboard with alternating class assignments where class 

TABLE 2 
ACCURACY( 100%× ) COMPARISON ON BENCHMARK DATA SETS 

Data sets (#SVs) Perceptron 
B=  ∞

TighterFull 

B=20(+N) 
TighterB 

B=20(+20) 
Stoptron 
B=20 

Forgetron 
B=20 

Random 
B=20 

Tighter0 

B=20 
Tightest 
B=20 

Adult9 (6502) 78.0 2.1 ± 80.1 2.1 ± 75.5 ± 1.5 75.5 ± 2.9 67.8 ± 7.8 69.4 ± 12.8 69.5 9.5 ± 80.8 ± 0.8 
Banana (582) 84.7 1.9 ± 87.6 1.5 ± 79.3 ± 2.6 79.2 ± 3.8 76.0 ± 4.3 74.5 ± 4.9 78.2 3.3 ± 86.7 ± 1.9 
NCheckerb (3089) 79.8 3.1 ± 85.8 1.2 ± 62.6 ± 3.8 64.3 ± 4.8 60.2 ± 3.9 59.6 ± 4.3 62.7 3.4 ± 77.7 ± 2.2 
Covertype (28056) 72.7 4.5 ± 61.3 6.3 ± 55.7 ± 4.7 55.9 ± 3.4 53.9 ± 3.8 53.3 ± 2.2 53.2 2.1 ± 66.1 ± 1.1 
Gauss (2616) 72.6 6.7 ± 77.9 4.1 ± 67.3 ± 3.4 69.8 ± 4.8 66.6 ± 5.6 67.0 ± 3.4 64.6 6.6 ± 80.8 ±  0.6 
IJCNN (2302) 96.2 1.6 ± 80.4 12.0 ± 80.3 ± 11.8 67.4 ± 17.2 77.7 ± 8.4 72.8 ± 23.3 82.0 13.0 ± 87.8 ± 2.6 
Letter (1250) 95.9 0.4 ± 77.1 1.6 ± 63.7 ± 4.2 63.6 ± 2.2 61.6 ± 3.5 61.1 ± 2.8 60.0 1.8 ± 67.1 ± 1.8 
MNIST (525) 97.4 0.9 ± 78.3 15.6 ± 76.8 ± 9.4 79.7 ± 10.8 72.1 ± 17.2 84.9 ± 5.2 82.0 6.6 ± 87.8 ± 3.5 
Pendigits (248) 97.7 1.3 ± 83.6 5.8 ± 80.2 ± 6.9 80.7 ± 5.5 82.7 ± 6.7 80.4 ± 5.7 82.7 5.1 ± 84.3 ± 4.8 
USPS (527) 94.5 1.1 ± 73.0 7.1 ± 74.5 ± 2.5 75.1 ± 3.2 65.4 ± 7.6 69.7 ± 6.4 70.3 5.2 ± 78.7 ± 1.9 
Waveform (1482) 86.2 0.7 ± 86.8 1.0 ± 77.4 ± 2.4 77.5 ± 2.8 76.4 ± 4.8 75.6 ± 4.7 72.6 3.6 ± 85.1 ± 1.5 
Average 87.0  78.5 71.6 71.1 68.4 69.3 70.5 79.8 
         
 B=  ∞ B=100(+N) B=100(+100) B=100 B=100 B=100 B=100 B=100 
Adult9 (6502) 78.0 2.1 ± 83.0 0.9 ± 76.4 ± 1.9 76.4 ± 3.0 75.1 ± 4.4 75.3 ± 4.0 71.2 7.3 ± 81.7 ± 0.6 
Banana (582) 84.7 1.9 ± 89.0 1.3 ± 86.1 ± 2.3 85.2 ± 2.0 82.1 ± 5.9 82.1 ± 3.8 83.2 3.5 ± 88.9 ± 0.8 
NCheckerb (3089) 79.8 3.1 ± 92.6 0.6 ± 74.2 ± 5.2 69.8 ± 3.8 66.4 ± 4.5 68.4 ± 3.0 71.4 4.6 ± 87.6 ± 1.3 
Covertype (28056) 72.7 4.5 ± 64.3 2.5 ± 61.0 ± 3.2 61.5 ± 3.8 59.6 ± 2.9 59.2 ± 2.9 56.9 3.5 ± 70.6 ± 1.1 
Gauss (2616) 72.6 6.7 ± 80.5 0.6 ± 74.3 ± 2.6 69.6 ± 7.3 72.2 ± 4.3 71.3 ± 5.0 65.7 4.4 ± 80.8 ± 0.8 
IJCNN (2302) 96.2 1.6 ± 89.3 8.5 ± 90.3 ± 4.1 89.3 ± 3.5 87.9 ± 5.4 81.5 ± 9.9 82.9 15.3 ± 91.7 ± 0.4 
Letter (1250) 95.9 0.4 ± 86.1 0.5 ± 74.6 ± 1.5 74.9 ± 1.8 72.5 ± 1.7 72.7 ± 1.7 73.3 2.9 ± 79.6 ± 0.7 
MNIST (525) 97.4 0.9 ± 89.6 5.0 ± 91.5 ± 3.3 93.4 ± 4.3 92.8 ± 2.8 90.3 ± 4.7 80.0 10.6 ± 95.8 ± 0.4 
Pendigits (248) 97.7 1.3 ± 93.7 2.7 ± 94.4 ± 2.1 96.2 ± 1.3 94.2 ± 4.0 98.3 ± 0.6 91.6 4.2 ± 97.1 ± 0.8 
USPS (527) 94.5 1.1 ± 85.1 4.4 ± 85.2 ± 3.6 81.2 ± 8.9 81.0 ± 7.4 80.8 ± 7.1 76.8 8.9 ± 89.2 ± 0.9 
Waveform (1482) 86.2 0.7 ± 88.0 0.7 ± 83.5 ± 1.6 83.9 ± 0.7 81.0 ± 1.2 82.1 ± 2.1 80.0 1.8 ± 87.5 ± 0.3 
Average 87.0 85.3 80.8 79.8 78.4 78.0 75.3 86.3 
         
 B=  ∞ B=500(+N) B=500(+500) B=500 B=500 B=500 B=500 B=500 
Adult9 (6502) 78.0 2.1 ± 82.7 0.3 ± 79.0 ± 0.6 78.3 ± 1.2 76.3 ± 2.5 77.0 ± 3.6 69.4 6.5 ± 82.4 ± 0.3 
Banana (582) 84.7 1.9 ± 88.9 1.1 ± 88.2 ± 1.3 87.5 ± 0.8 84.8 ± 2.3 85.3 ± 1.7 84.8 2.5 ± 89.9 ± 1.0 
NCheckerb (3089) 79.8 3.1 ± 94.9 1.0 ± 87.6 ± 1.1 76.6 ± 2.8 70.3 ± 5.2 73.6 ± 4.3 75.5 5.6 ± 94.2 ± 0.8 
Covertype (28056) 72.7 4.5 ± 71.9 0.8 ± 68.7 ± 3.5 65.3 ± 5.4 65.7 ± 1.9 62.9 ± 3.1 62.6 3.4 ± 75.4 ± 0.6 
Gauss (2616) 72.6 6.7 ± 80.7 0.4 ± 78.1 ± 1.3 72.2 ± 3.1 70.1 ± 5.8 68.8 ± 5.0 65.6 5.4 ± 81.4 ± 0.5 
IJCNN (2302) 96.2 1.6 ± 94.0 2.8 ± 94.5 ± 1.3 93.1 ± 4.4 90.1 ± 5.7 91.6 ± 2.4 93.5 3.4 ± 94.3 ± 0.5 
Letter (1250) 95.9 0.4 ± 93.9 0.6 ± 89.6 ± 0.6 90.5 ± 0.3 88.0 ± 1.4 86.3 ± 1.0 88.2 0.9 ± 91.6 ± 0.5 
MNIST (525) 97.4 0.9 ± 96.5 1.3 ± 95.6 ± 1.1 95.3 ± 5.9 95.2 ± 2.6 95.4 ± 2.3 95.2 2.2 ± 97.5 ± 0.3 
Pendigits (248) 98.2 0.6 ± 98.2 0.6 ± 98.2 ± 0.6 98.2 ± 0.6 98.2 ± 0.5 98.2 ± 0.6 98.2 0.6 ± 98.2 ± 0.6 
USPS (527) 94.5 1.1 ± 93.7 2.7 ± 93.2 ± 1.3 93.2 ± 1.7 90.5 ± 3.2 90.6 ± 4.3 92.5 1.6 ± 94.7 ± 0.5 
Waveform (1482) 86.2 0.7 ± 87.9 0.2 ± 85.3 ± 0.8 85.0 ± 1.0 84.3 ± 1.2 83.8 ± 1.1 82.0 1.0 ± 87.3 ± 0.6 
Average 87.0 89.5 87.3  85.0 82.9 83.0 82.6 90.0 

Values in parentheses in the data set column are # of SVs learned by Perceptron. Values in bold in Tightest column indicate the highest accuracy among budget 
Perceptron algorithms. Values in italics in Tightest column indicate the accuracy is even better than Perceptron.  Values in parentheses in TighterFull and 
TighterB columns are the budget size for the additional validation set.    

TABLE 1 
DATA SET AND KERNEL PARAMETER SUMMARIES 

Data sets Training Testing  Dim 2δ  
Adult9 30162 15060 123 25 
Banana 4300 1000 2 0.1 
NCheckerboard 10000 5000 2 0.1 
Covertype 100000 100000 54 54/2 
Gauss 10000 5000 2 0.1 
IJCNN 49990 91701 22 22/2 
Letter 16000 4000 16 1 
MNIST 11982 1984 784 784/2 
Pendigits 7494 3498 16 16/2 
USPS 7291 2007 256 256/2 
Waveform 10000 5000 21 3.17 
 

3300



 
 

 

assignment was switched for 15% of the randomly selected 
examples. For both testing sets, we used the noise-free 
version as the test set. In this way, the highest reachable 
accuracy for N-Checkerboard was 100%.  

B. Evaluation Procedure 
We compared the proposed Tightest Perceptron algorithm 

with four state of the art budget perceptron algorithms: 
Self-Tuned Forgetron [6], Random Perceptron [2], and 
Tighter0 and TighterA Perceptrons [13], as well as to the 
baseline algorithm Stoptron where the kernel perceptron 
terminates once the budget is full. For TighterA, we use A=B 
randomly selected examples as the additional validation set, 

and denote it as TighterB. As a reference, we also present 
results from the original Kernel Perceptron, and the budget 
unconstrained version of Tighter Perceptron, TighterFull [13] 
(names in italics are used in Table 2 and Figure 2).  
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We evaluated three different budgets B = 20, 100, 500, 
using an RBF kernel defined as k(x,y) = exp(−||x−y||2/2δ2), 
where δ is the RBF width. To keep things simple, for Adult9, 
USPS and Waveform we used the same kernel width as in 
previous papers [10, 13]. For 2-dimensional data sets, a small 
kernel width of 0.1 was used and for all the remaining data 
sets the kernel width was set to δ 2 = M/2 [3], where M is the 
number of attributes. The summary of kernel widths is shown 
in Table 1. Training examples were ordered randomly. 
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Fig 2. Solutions of all algorithms on NChecherboard data 
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Attributes in all data sets were scaled to mean zero and 
standard deviation one. 

C. Results 
In this section we summarize performance results on all 11 

benchmark data sets. Each result (mean std) listed in Table 
2, comparing the alternative kernel perceptron algorithms at 
three different budgets, is an average and standard deviation 
of 10 repeated experiments.  

±

From Table 2 it can be seen that Tightest significantly 
outperforms all competing budget perceptron algorithms on 
every data set and for all three budgets. The Tightest is 
significantly more accurate than both Tighter0 and TighterB 
that require roughly twice larger memory. This result 
confirms that using the posterior class probability by the 
proposed method provides highly valuable information for 
accuracy estimation.  

It is worth noting that Tightest is often better than even the 
memory unbounded TighterFull. A part of the explanation for 
such behavior is that TighterFull uses the 0-1 loss while 
Tightest uses the hinge loss that is more sensitive to the errors 
far from the decision boundary. Therefore, it may be more 
suitable for removing outlying noisy support vectors. 

Comparing Tightest with the memory unbounded Kernel 
Perceptron, we can observe that Tightest is highly 
competitive and sometimes even more accurate than Kernel 
Perceptron. As seen, the accuracy of Tightest with B=500 is 
better than Perceptron in 8 of 11 data sets, with a modest 
budget B=100 Tightest is more accurate 5 times, and even 
with a tiny budget of  B=20 Tightest still beats Perceptron on 
3 of the noisiest data sets. The success of Tightest probably 
lies in its ability to remove less useful or even harmful 
support vectors after consulting the accuracy after removal. 

Of the remaining results, it is interesting to note that the 
two theoretically well behaved algorithms Fogetron and 
Random had quite poor performance and it was comparable 
to Tighter0. Their accuracy was often below the simple 
baseline algorithm Stoptron. This behavior is particularly 
noticeable on the noisiest data sets. 

D. Illustration on 2D N-Checkerboard  
In Figure 2 we illustrate the solutions of various 

algorithms on NCheckerboard data. Budget B=500 was used 
for the budget Perceptron algorithms. In Figure 2(a-h) 
magenta and cyan lines are positive and negative margins, 
respectively. Black line is the decision boundary, and red and 
green dots indicate positive and negative SVs, respectively. It 
can be seen that the decision boundaries created by 
Perceptron, Stoptron, Random, Forgetron and Tighter0 in 
Figure 2(a-f) are not particularly successful, making it 
difficult to distinguish the underlying checkerboard. In 
contrast, TighterFull and Tightest solutions are quite 
successful and it is easy to distinguish the checkerboard 
pattern. Another interesting observation is that the support 
vectors in the Tightest solution lie close to the decision 

boundary. 
In Figure 2(i) the time comparison between the two 

optimal solution algorithms is illustrated. As seen, the 
memory bounded Tightest runtime appears linear while the 
memory unbounded TighterFull

 runtime appears quadratic, as 
expected.  

V. CONCLUSION 
In this paper we presented the Tightest Perceptron 

algorithm for online learning on a budget. The algorithm 
achieves constant update runtime and constant space 
complexity with the training data size. Experimental results 
showed that Tightest significantly outperforms 
state-of-the-art budget perceptron algorithms and is often 
superior to the memory unbounded kernel perceptron, despite 
using a rather small budget. This hints at the possibility of 
building accurate perceptron classifiers from very large data 
streams while operating under a very limited memory budgets. 
Furthermore, Tightest results in very compact predictors and 
it directly addresses a problem often observed in practice 
where the size of the support vector set grows with the 
training data size.  
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