
Proceedings of International Joint Conference on Neural Networks, Atlanta, Georgia, USA, June 14-19, 2009

978-1-4244-3553-1/09/$25.00 ©2009 IEEE

Tighter Perceptron with Improved Dual Use of Cached Data for
Model Representation and Validation

Zhuang Wang and Slobodan Vucetic

Abstract—Kernel Perceptrons are represented by a subset of
training points, called the support vectors, and their associated
weights. To address the issue of unlimited growth in model size
during training, budget kernel perceptrons maintain the fixed
number of support vectors and thus achieve the constant update
time and space complexity. In this paper, a new kernel
perceptron algorithm for online learning on a budget is
proposed. Following the idea of Tighter Perceptron, upon
exceeding the budget, the algorithm removes the support vector
with the minimal impact on classification accuracy. To optimize
memory use, instead on maintaining a separate validation data
set for accuracy estimation, the proposed algorithm only uses
the support vectors for both model representation and
validation. This is achieved by estimating posterior class
probability of each support vector and using this information in
validation. The experimental results on 11 benchmark data sets
indicate that the proposed algorithm is significantly more
accurate than the competing budget kernel perceptrons and
that it has comparable accuracy to the resource unbounded
perceptrons, including the original kernel perceptron and the
Tighter Perceptron that uses whole training data set for
validation.

I. INTRODUCTION
HE invention of the Support Vector Machines [12]
attracted a lot of interest in adapting the kernel methods
for both batch and online learning. Kernel perceptrons [5,

7, 8, 9] are a popular class of algorithms for online learning.
They are represented by a subset of observed examples,
called the support vectors, and their weights. The baseline
kernel perceptron algorithm is simple – it observes a new
example and, if it is misclassified by the current model, adds
it to the model as a new support vector. The popularity of
kernel perceptrons is due to their ease of implementation, the
ability to achieve quite competitive classification accuracy to
the batch mode alternatives, and the existence of theoretical
results characterizing their behavior.

In addition to their appealing properties, kernel
perceptrons often suffer from an unbounded growth in the
number of support vectors with training data size. This, in
turn, causes unbounded growth in training time and space
needed to store the classifier. Such behavior is unacceptable
in many practical online learning applications. To address the
issue of unbounded growth in computational resources, a

class of online kernel perceptron algorithms on a fixed budget
has been developed. To maintain the budget, the proposed
algorithms typically decide to discard one of the support
vectors when the budget is exceeded upon addition of a new
support vector. While there are theoretical guarantees for
convergence of several budget kernel perceptron algorithms,
their actual performance is often poor on noisy classification
problems.

This work was supported by the U.S. National Science Foundation under

Grant IIS-0546155.
Zhuang Wang and Slobodan Vucetic are with the Center for Information

Science and Technology, Department of Computer and Information Sciences,
Temple University, Philadelphia, PA 19122, USA, email:
zhuang@temple.edu, vucetic@ist.temple.edu.

Among budget kernel perceptrons, the Tighter Perceptron
algorithm [13] is one of the most successful in practice. It
removes the support vector that has the minimal positive
impact on the classification accuracy. To estimate the
accuracy, the algorithm requires maintenance of an additional
validation data set. When the validation set is large, Tighter
Perceptron is able to achieve respectable classification
accuracy. However, the existence of validation set also puts
an increasing burden on training speed and memory. When,
in order to decrease the budget, the support vector set is used
both for model representation and validation, the accuracy
decreases dramatically. The main reason for such behavior is
that support vectors are a biased sample of training examples
that were incorrectly classified. Therefore, support vectors
are likely to contain an overwhelming amount of noisy
training examples and could therefore provide quite
misleading accuracy estimates.

In this paper, we propose a new algorithm, called here for
convenience the Tightest Perceptron, that manages to obtain
highly accurate estimates of classification accuracy using
exclusively the support vectors. To achieve this, a simple data
summary is maintained along each support vector to estimate
the posterior class probability for each support vector. During
the validation, the expectation of the validation hinge loss is
calculated based on the estimated class probabilities. The
experimental results show that the proposed algorithm has
impressive performance on 11 benchmark data sets.

II. PROBLEM SETTING AND PREVIOUS WORK
We study the online learning for binary classification.

Online learning is performed in a sequence of consecutive
rounds. On each round, the algorithm observes an example
from the training set. An example is a pair (x, y), where x is an
M-dimensional attribute vector and is the
associated binary label. The independent and identically
distributed training set D is a sequence of examples (x

{ 1, 1}y ∈ + −

1,
y1),...,(xN, yN) and can only be observed in a single pass.

The classical perceptron algorithm [11] has the following
training procedure. Initially, the prediction model f (x) is set to
zero, f (x) = 0. In round t, the new example (xt, yt) is observed

T

3297

and its label is predicted by the current model f (x) as
sign(f (xt)). If the margin of this example, defined as the
product yt⋅ f (xt), is below threshold β = 0 (i.e. ()t ty f x β≤),
then weight αt = 1 is assigned to this example and the model
is updated as () () t t tf x f x y x xα= + ⋅ . Each example added
to the model is called the Support Vector (SV). If the example
is correctly classified, its weight is set to αt = 0, and the model
is thus not updated.

Alternatively, the algorithm can also modify the current
hypothesis by multiplying it with scalar φt (() ()t t tf x f xφ=).
The standard parameter values of β = 0, αt = 1, and φt = 1 can
be chosen differently, as was done in ALMA [7], ROMMA
[9], NORMA [8] and PA [5] algorithms. In this paper, we will
consider kernel perceptrons with the standard parameter
values.

The classical perceptron implies a linear decision function.
It could be made nonlinear by using Φ(x) as attributes instead
of x, where Φ is a nonlinear mapping of the original attribute
space into the feature space. If there exists a kernel function k
such that () () (,)i ix x k x xΦ ⋅Φ = [1], the model f (x) can be
represented as

1 1
() () () (,)N N

i i i i i ii i
f x y x x y k xα α

= =
= Φ ⋅Φ =∑ ∑ x

)}

and is denoted as the kernel perceptron. It is important to note
that the kernel function k allows us to express the model in
terms of the original attributes and avoid explicitly working
in the potentially high (or infinite) dimensional feature space.

A. Budget Perceptron Algorithms
In spite of the powerful performance, kernel methods often

suffer from an unbounded growth in the number of support
vectors with training data. This creates serious problems in
both training and testing phase because the time needed to
compute f (x) and the space needed to store the model scales
linearly with the number of SVs. In many practical online
applications where a short feedback time and bounded space
is a requirement, the unbounded growth mentioned above is
not acceptable. This fact motivated work in developing online
algorithms on a fixed budget.

1) Fixed Budget Perceptron: The pioneering work was
done in [4] to address the problem. There, a standard kernel
perceptron was modified by adding a support vector removal
procedure to keep the budget. Let us denote It as the set of
support vectors at round t of the kernel perceptron algorithm.
If the number of support vectors exceeds the predefined
budget B in round t (i.e. |It|>B), support vector with the
largest margin,

({arg max () (,)
t

j j j j j j
j I

y f x y k x xα
∈

− ,

is removed. While this algorithm achieves respectable
accuracy on relatively noise-free data it is less successful on
noisy data. This is because in the noisy case this algorithm
tends to remove well-classified points and accumulate the
noisy examples, resulting in degradation of accuracy.

2) Random Perceptron: The simplest removal procedure is
to remove a randomly selected support vector. Despite its
simplicity, this algorithm often has satisfactory performance.

In addition, the algorithm’s convergence has also been
proven [2].

3) Forgetron: A more advanced removal procedure was
developed in [6] by introducing a forgetting factor. After each
update step, forgetting factor 10 << tφ is used to scale the
current model (and all its support vectors). The oldest support
vector (with the smallest weight) is removed if budget is
exceeded. The algorithm’s convergence has also been
proven.

4) Tighter Perceptron: [13] proposed to remove the
support vector that has the smallest positive influence on
accuracy. To allow accuracy estimation, an additional
validation set composed of the previously observed training
examples is maintained. Specifically, on the t-th round where
|It|>B, the algorithm removes j-th support vector with

()()0 1arg min ,sign () (,)
t t

k k j j j k
j I k V

l y f x y k x xα−
∈ ∈

⎧ ⎫⎪ ⎪−⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ,

where Vt is the validation set and l0-1 denotes the 0-1
classification loss.
 From the perspective of accuracy estimation, it is ideal to
use all the previously seen training examples for validation.
However, the use of validation set puts an additional burden
to the memory budget and the training time. Due to practical
considerations, the size of validation data set should be
restricted. There are several variants of the Tighter algorithm
depending on the size of the validation set: TighterFull uses all
training examples for validation, TighterA uses selected A
examples that are disjoint from the support vectors, and
Tighter0 uses support vectors. While TighterA and Tighter0
are budget algorithms, their accuracy estimates are less
reliable. That is especially the case for Tighter0 because the
support vector set is a biased sample from training data that is
likely to contain disproportionally large fraction of noisy
examples.

In the following section, a statistically-based method is
proposed to improve accuracy estimation using only the
support vector set.

III. THE PROPOSED ALGORITHM
The main property of the proposed algorithm is an

improved accuracy validation using only the support vector
set. The validation improvement is possible when posterior
class probabilities of support vectors are used instead of their
actual labels (as is done in Tighter0). The open problem with
this approach is that posterior class probabilities of support
vectors are unknown and should be estimated. Our idea is that
a high-quality class probability estimate for each support
vector can be obtained by looking at labels of training
examples in its neighborhood. We call the resulting algorithm
the Tightest Perceptron or Tightest, in short.

The proposed algorithm is sketched in Figure 1. Instead of
simply discarding the selected support vector or the new
training point that does not become the support vector, we are
using its class information to improve the class probability
estimate of its nearest support vector. To implement the idea,
the i-th SV is represented by tuple (xi, yi, ci

+, ci
−) containing its

3298

attribute values xi, the original label yi, and counts ci
+ and ci

−
that represent the total number of positive and negative
training examples observed in its close neighborhood. As will
be descried in III.A, these counts are used to estimate the
posterior class distribution at xi. We denote the set of support
vectors augmented by the counts with S.

After initializing f(x) to zero and setting the augmented
support set S to empty, examples from the training data are
read sequentially. If the observed example is well classified,
the current model is retained. Before discarding the example,
UpdateSummary subroutine is used to update count of its
nearest support vector. Instead of incrementing the count by
one, we use the soft increment that is a function of kernel
distance. In this way, larger weight is given to the labels of
training examples closest to the support vectors.

If a training example is misclassified, it is added to the
current model, and S is updated accordingly. When the
number of support vectors exceeds the budget B, | S | > B, the
algorithm evaluates removal of each SV, selects the one
whose removal introduces the least validation loss, and
updates the model by removing it. Details of the selection are
given in III.A. Before discarding the support vector, its
counts are used to update the counts of its nearest support
vector.

A. Accuracy Estimation
Given the support vector set S, the best support vector for

removal is determined as the one with index
)),()((minarg xxkyxflossr jjSj −= ∈ ,

where loss is defined as the expected accuracy loss on the
support vector set,

∑
∈

−−++ +=
Si

iiii lplp
S

xfloss)(
||

1))((, (1)

where pi
+ = P(yi = 1 | xi) and pi

− = P(yi = −1 | xi) are the
posterior probabilities that xi is labeled as positive and
negative, respectively. Quantity li

+ (or li
−) denotes the

accuracy loss at xi assuming its class label is actually positive
(or negative).

Input: (x1, y1),...,(xN, yN), budget B
Initialization: f(x) = 0, S = ∅
Output: f(x)

for i=1 to N

if () 0i iy f x ≤
f(x) = f(x) + yi k(xi,x)
if yi=1

{(, ,1,0)}i iS S x y= ∪
else {(, ,0,1)}i iS S x y= ∪
if | | S B>
 arg min (() (,))j S j jr loss f x y k x∈= −

One choice of accuracy loss is the traditional 0-1 loss
defined as li

+ = 1 if f(xi) < 0, and li
+ = 0 otherwise. A slight

problem with 0-1 loss is that it could not distinguish between
large and small errors, which can be important when
validation data size is small. The alternative choice,
implemented in our algorithm, is to use the hinge loss defined
as li

+ = max(0,1−(+1)⋅f(xi)) and li
− = max(0,1−(−1)⋅f(xi)).

We observe that, using the introduced notation, in Tighter0
algorithm pi

+ = 1 and pi
− = 0 if yi = +1, and pi

+ = 0 and pi
− = 1

if yi = −1, and that 0-1 loss is used for li
+ and li

−.
The remaining issue is estimating value of pi

+ (observe that
pi

− = 1 – pi
+) based on counts ci

+ and ci
− maintained by the

algorithm. The maximum likelihood estimate pi
+ =

ci
+/(ci

+ + ci
−) is unreliable when counts are small. Instead, we

use the Bayesian approach where pi
+ is treated as a random

variable whose prior has Beta distribution Beta(a+,a−), where
a+ and a− are some positive values (typically set to 1). In this
case, the posterior distribution of pi

+ has Beta distribution
Beta(ci

+ + a+, ci
− + a−). Since we are treating pi

+ and pi
− as

random variables, we need to modify the accuracy loss in
equation (1) to

∑
∈

−+++ −+=
Si

iiii lwlw
S

xfloss))1((
||

1))((,

x
 f(x) = f(x) – yr k(xr,x)

{(, , ,)}r r r rS S x y c c+ −= −
UpdateSummary(S, xr, cr

+, cr
−)

else
if yi=1

UpdateSummary(S, xi, 1, 0)
else UpdateSummary(S, xi, 0, 1)

Subroutine UpdateSummary(S, x, c+, c−)
arg min || ||j S jk x∈= − x

ck
+ = ck

+ + c+⋅ k (x , xk)
ck

− = ck
− + c−⋅ k (x , xk)

Fig 1. The pseudo code for Tightest

(2)

where wi
+ is calculated as

.),|(1
5.0∫

−−+++ ++= dxacacxBetaw iii

B. Complexity
 The space requirement of the proposed Tightest perceptron
is constant in training size and scales as O(B) with the budget
B, because only B support vectors are maintained in the
memory. Let us now consider the time complexity. The
prediction for the new coming example takes O(B) runtime.
With some bookkeeping (predictions of the current
perceptron on each support vector should be maintained), the
evaluation of accuracy loss after removal of a single SV
requires O(B) time, and there are B+1 such evaluations.
Finding the nearest neighbor in UpdateSummary subroutine
costs another O(B). Therefore, the total runtime for an update
is O(B2) and the total training time for a data set of size N is
O(NB2).

3299

IV. EXPERIMENTS
In this section, we present results of detailed evaluation of

the proposed Tightest perceptron on a number of benchmark
datasets.

A. Data sets
Properties of 11 benchmark data sets for binary

classification are summarized in Table 1. The multi-class data
sets were converted to two-class sets as follows. For the digit
datasets Pendigits and USPS we converted the original
10-class problems to binary by representing digits 1, 2, 4, 5, 7
(non-round digits) as negative class and digits 3, 6, 8, 9, 0
(round digits) as positive class. For Letter dataset, negative
class was created from the first 13 letters of the alphabet and
positive class from the remaining 13. The 10-class MNIST
data set was simplified to binary data by separating digit 3
from digit 8. Class 1 in the 3-class Waveform was treated as
negative and the remaining two as positive. For Covertype

data the class 2 was treated as positive and the remaining 6
classes as negative. Adult9, Banana, Gauss, and IJCNN were
originally 2-class data sets. NCheckerboard data was
generated as a uniformly distributed two-dimensional 4 × 4
checkerboard with alternating class assignments where class

TABLE 2
ACCURACY(100%×) COMPARISON ON BENCHMARK DATA SETS

Data sets (#SVs) Perceptron
B= ∞

TighterFull

B=20(+N)
TighterB

B=20(+20)
Stoptron
B=20

Forgetron
B=20

Random
B=20

Tighter0

B=20
Tightest
B=20

Adult9 (6502) 78.0 2.1 ± 80.1 2.1 ± 75.5 ± 1.5 75.5 ± 2.9 67.8 ± 7.8 69.4 ± 12.8 69.5 9.5 ± 80.8 ± 0.8
Banana (582) 84.7 1.9 ± 87.6 1.5 ± 79.3 ± 2.6 79.2 ± 3.8 76.0 ± 4.3 74.5 ± 4.9 78.2 3.3 ± 86.7 ± 1.9
NCheckerb (3089) 79.8 3.1 ± 85.8 1.2 ± 62.6 ± 3.8 64.3 ± 4.8 60.2 ± 3.9 59.6 ± 4.3 62.7 3.4 ± 77.7 ± 2.2
Covertype (28056) 72.7 4.5 ± 61.3 6.3 ± 55.7 ± 4.7 55.9 ± 3.4 53.9 ± 3.8 53.3 ± 2.2 53.2 2.1 ± 66.1 ± 1.1
Gauss (2616) 72.6 6.7 ± 77.9 4.1 ± 67.3 ± 3.4 69.8 ± 4.8 66.6 ± 5.6 67.0 ± 3.4 64.6 6.6 ± 80.8 ± 0.6
IJCNN (2302) 96.2 1.6 ± 80.4 12.0 ± 80.3 ± 11.8 67.4 ± 17.2 77.7 ± 8.4 72.8 ± 23.3 82.0 13.0 ± 87.8 ± 2.6
Letter (1250) 95.9 0.4 ± 77.1 1.6 ± 63.7 ± 4.2 63.6 ± 2.2 61.6 ± 3.5 61.1 ± 2.8 60.0 1.8 ± 67.1 ± 1.8
MNIST (525) 97.4 0.9 ± 78.3 15.6 ± 76.8 ± 9.4 79.7 ± 10.8 72.1 ± 17.2 84.9 ± 5.2 82.0 6.6 ± 87.8 ± 3.5
Pendigits (248) 97.7 1.3 ± 83.6 5.8 ± 80.2 ± 6.9 80.7 ± 5.5 82.7 ± 6.7 80.4 ± 5.7 82.7 5.1 ± 84.3 ± 4.8
USPS (527) 94.5 1.1 ± 73.0 7.1 ± 74.5 ± 2.5 75.1 ± 3.2 65.4 ± 7.6 69.7 ± 6.4 70.3 5.2 ± 78.7 ± 1.9
Waveform (1482) 86.2 0.7 ± 86.8 1.0 ± 77.4 ± 2.4 77.5 ± 2.8 76.4 ± 4.8 75.6 ± 4.7 72.6 3.6 ± 85.1 ± 1.5
Average 87.0 78.5 71.6 71.1 68.4 69.3 70.5 79.8

 B= ∞ B=100(+N) B=100(+100) B=100 B=100 B=100 B=100 B=100
Adult9 (6502) 78.0 2.1 ± 83.0 0.9 ± 76.4 ± 1.9 76.4 ± 3.0 75.1 ± 4.4 75.3 ± 4.0 71.2 7.3 ± 81.7 ± 0.6
Banana (582) 84.7 1.9 ± 89.0 1.3 ± 86.1 ± 2.3 85.2 ± 2.0 82.1 ± 5.9 82.1 ± 3.8 83.2 3.5 ± 88.9 ± 0.8
NCheckerb (3089) 79.8 3.1 ± 92.6 0.6 ± 74.2 ± 5.2 69.8 ± 3.8 66.4 ± 4.5 68.4 ± 3.0 71.4 4.6 ± 87.6 ± 1.3
Covertype (28056) 72.7 4.5 ± 64.3 2.5 ± 61.0 ± 3.2 61.5 ± 3.8 59.6 ± 2.9 59.2 ± 2.9 56.9 3.5 ± 70.6 ± 1.1
Gauss (2616) 72.6 6.7 ± 80.5 0.6 ± 74.3 ± 2.6 69.6 ± 7.3 72.2 ± 4.3 71.3 ± 5.0 65.7 4.4 ± 80.8 ± 0.8
IJCNN (2302) 96.2 1.6 ± 89.3 8.5 ± 90.3 ± 4.1 89.3 ± 3.5 87.9 ± 5.4 81.5 ± 9.9 82.9 15.3 ± 91.7 ± 0.4
Letter (1250) 95.9 0.4 ± 86.1 0.5 ± 74.6 ± 1.5 74.9 ± 1.8 72.5 ± 1.7 72.7 ± 1.7 73.3 2.9 ± 79.6 ± 0.7
MNIST (525) 97.4 0.9 ± 89.6 5.0 ± 91.5 ± 3.3 93.4 ± 4.3 92.8 ± 2.8 90.3 ± 4.7 80.0 10.6 ± 95.8 ± 0.4
Pendigits (248) 97.7 1.3 ± 93.7 2.7 ± 94.4 ± 2.1 96.2 ± 1.3 94.2 ± 4.0 98.3 ± 0.6 91.6 4.2 ± 97.1 ± 0.8
USPS (527) 94.5 1.1 ± 85.1 4.4 ± 85.2 ± 3.6 81.2 ± 8.9 81.0 ± 7.4 80.8 ± 7.1 76.8 8.9 ± 89.2 ± 0.9
Waveform (1482) 86.2 0.7 ± 88.0 0.7 ± 83.5 ± 1.6 83.9 ± 0.7 81.0 ± 1.2 82.1 ± 2.1 80.0 1.8 ± 87.5 ± 0.3
Average 87.0 85.3 80.8 79.8 78.4 78.0 75.3 86.3

 B= ∞ B=500(+N) B=500(+500) B=500 B=500 B=500 B=500 B=500
Adult9 (6502) 78.0 2.1 ± 82.7 0.3 ± 79.0 ± 0.6 78.3 ± 1.2 76.3 ± 2.5 77.0 ± 3.6 69.4 6.5 ± 82.4 ± 0.3
Banana (582) 84.7 1.9 ± 88.9 1.1 ± 88.2 ± 1.3 87.5 ± 0.8 84.8 ± 2.3 85.3 ± 1.7 84.8 2.5 ± 89.9 ± 1.0
NCheckerb (3089) 79.8 3.1 ± 94.9 1.0 ± 87.6 ± 1.1 76.6 ± 2.8 70.3 ± 5.2 73.6 ± 4.3 75.5 5.6 ± 94.2 ± 0.8
Covertype (28056) 72.7 4.5 ± 71.9 0.8 ± 68.7 ± 3.5 65.3 ± 5.4 65.7 ± 1.9 62.9 ± 3.1 62.6 3.4 ± 75.4 ± 0.6
Gauss (2616) 72.6 6.7 ± 80.7 0.4 ± 78.1 ± 1.3 72.2 ± 3.1 70.1 ± 5.8 68.8 ± 5.0 65.6 5.4 ± 81.4 ± 0.5
IJCNN (2302) 96.2 1.6 ± 94.0 2.8 ± 94.5 ± 1.3 93.1 ± 4.4 90.1 ± 5.7 91.6 ± 2.4 93.5 3.4 ± 94.3 ± 0.5
Letter (1250) 95.9 0.4 ± 93.9 0.6 ± 89.6 ± 0.6 90.5 ± 0.3 88.0 ± 1.4 86.3 ± 1.0 88.2 0.9 ± 91.6 ± 0.5
MNIST (525) 97.4 0.9 ± 96.5 1.3 ± 95.6 ± 1.1 95.3 ± 5.9 95.2 ± 2.6 95.4 ± 2.3 95.2 2.2 ± 97.5 ± 0.3
Pendigits (248) 98.2 0.6 ± 98.2 0.6 ± 98.2 ± 0.6 98.2 ± 0.6 98.2 ± 0.5 98.2 ± 0.6 98.2 0.6 ± 98.2 ± 0.6
USPS (527) 94.5 1.1 ± 93.7 2.7 ± 93.2 ± 1.3 93.2 ± 1.7 90.5 ± 3.2 90.6 ± 4.3 92.5 1.6 ± 94.7 ± 0.5
Waveform (1482) 86.2 0.7 ± 87.9 0.2 ± 85.3 ± 0.8 85.0 ± 1.0 84.3 ± 1.2 83.8 ± 1.1 82.0 1.0 ± 87.3 ± 0.6
Average 87.0 89.5 87.3 85.0 82.9 83.0 82.6 90.0

Values in parentheses in the data set column are # of SVs learned by Perceptron. Values in bold in Tightest column indicate the highest accuracy among budget
Perceptron algorithms. Values in italics in Tightest column indicate the accuracy is even better than Perceptron. Values in parentheses in TighterFull and
TighterB columns are the budget size for the additional validation set.

TABLE 1
DATA SET AND KERNEL PARAMETER SUMMARIES

Data sets Training Testing Dim 2δ
Adult9 30162 15060 123 25
Banana 4300 1000 2 0.1
NCheckerboard 10000 5000 2 0.1
Covertype 100000 100000 54 54/2
Gauss 10000 5000 2 0.1
IJCNN 49990 91701 22 22/2
Letter 16000 4000 16 1
MNIST 11982 1984 784 784/2
Pendigits 7494 3498 16 16/2
USPS 7291 2007 256 256/2
Waveform 10000 5000 21 3.17

3300

assignment was switched for 15% of the randomly selected
examples. For both testing sets, we used the noise-free
version as the test set. In this way, the highest reachable
accuracy for N-Checkerboard was 100%.

B. Evaluation Procedure
We compared the proposed Tightest Perceptron algorithm

with four state of the art budget perceptron algorithms:
Self-Tuned Forgetron [6], Random Perceptron [2], and
Tighter0 and TighterA Perceptrons [13], as well as to the
baseline algorithm Stoptron where the kernel perceptron
terminates once the budget is full. For TighterA, we use A=B
randomly selected examples as the additional validation set,

and denote it as TighterB. As a reference, we also present
results from the original Kernel Perceptron, and the budget
unconstrained version of Tighter Perceptron, TighterFull [13]
(names in italics are used in Table 2 and Figure 2).

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

We evaluated three different budgets B = 20, 100, 500,
using an RBF kernel defined as k(x,y) = exp(−||x−y||2/2δ2),
where δ is the RBF width. To keep things simple, for Adult9,
USPS and Waveform we used the same kernel width as in
previous papers [10, 13]. For 2-dimensional data sets, a small
kernel width of 0.1 was used and for all the remaining data
sets the kernel width was set to δ 2 = M/2 [3], where M is the
number of attributes. The summary of kernel widths is shown
in Table 1. Training examples were ordered randomly.

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

(a) Perceptron solution (b) Stoptron solution (c) Forgetron solution

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

 (d) Random solution (e) Tighter0 B solution (f) Tighter solution

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

1200

1400

length of data stream

co
m

pu
ta

tio
n

tim
e

(in
 s

ec
on

ds
)

Tightest
TighterFull(memory unbounded)

Full solution (h) Tightest solution (i) Computation time comparison (g) Tighter

Fig 2. Solutions of all algorithms on NChecherboard data

3301

Attributes in all data sets were scaled to mean zero and
standard deviation one.

C. Results
In this section we summarize performance results on all 11

benchmark data sets. Each result (mean std) listed in Table
2, comparing the alternative kernel perceptron algorithms at
three different budgets, is an average and standard deviation
of 10 repeated experiments.

±

From Table 2 it can be seen that Tightest significantly
outperforms all competing budget perceptron algorithms on
every data set and for all three budgets. The Tightest is
significantly more accurate than both Tighter0 and TighterB
that require roughly twice larger memory. This result
confirms that using the posterior class probability by the
proposed method provides highly valuable information for
accuracy estimation.

It is worth noting that Tightest is often better than even the
memory unbounded TighterFull. A part of the explanation for
such behavior is that TighterFull uses the 0-1 loss while
Tightest uses the hinge loss that is more sensitive to the errors
far from the decision boundary. Therefore, it may be more
suitable for removing outlying noisy support vectors.

Comparing Tightest with the memory unbounded Kernel
Perceptron, we can observe that Tightest is highly
competitive and sometimes even more accurate than Kernel
Perceptron. As seen, the accuracy of Tightest with B=500 is
better than Perceptron in 8 of 11 data sets, with a modest
budget B=100 Tightest is more accurate 5 times, and even
with a tiny budget of B=20 Tightest still beats Perceptron on
3 of the noisiest data sets. The success of Tightest probably
lies in its ability to remove less useful or even harmful
support vectors after consulting the accuracy after removal.

Of the remaining results, it is interesting to note that the
two theoretically well behaved algorithms Fogetron and
Random had quite poor performance and it was comparable
to Tighter0. Their accuracy was often below the simple
baseline algorithm Stoptron. This behavior is particularly
noticeable on the noisiest data sets.

D. Illustration on 2D N-Checkerboard
In Figure 2 we illustrate the solutions of various

algorithms on NCheckerboard data. Budget B=500 was used
for the budget Perceptron algorithms. In Figure 2(a-h)
magenta and cyan lines are positive and negative margins,
respectively. Black line is the decision boundary, and red and
green dots indicate positive and negative SVs, respectively. It
can be seen that the decision boundaries created by
Perceptron, Stoptron, Random, Forgetron and Tighter0 in
Figure 2(a-f) are not particularly successful, making it
difficult to distinguish the underlying checkerboard. In
contrast, TighterFull and Tightest solutions are quite
successful and it is easy to distinguish the checkerboard
pattern. Another interesting observation is that the support
vectors in the Tightest solution lie close to the decision

boundary.
In Figure 2(i) the time comparison between the two

optimal solution algorithms is illustrated. As seen, the
memory bounded Tightest runtime appears linear while the
memory unbounded TighterFull

 runtime appears quadratic, as
expected.

V. CONCLUSION
In this paper we presented the Tightest Perceptron

algorithm for online learning on a budget. The algorithm
achieves constant update runtime and constant space
complexity with the training data size. Experimental results
showed that Tightest significantly outperforms
state-of-the-art budget perceptron algorithms and is often
superior to the memory unbounded kernel perceptron, despite
using a rather small budget. This hints at the possibility of
building accurate perceptron classifiers from very large data
streams while operating under a very limited memory budgets.
Furthermore, Tightest results in very compact predictors and
it directly addresses a problem often observed in practice
where the size of the support vector set grows with the
training data size.

REFERENCES
[1] M. Aizerman, E. Braverman, and L. Rozonoer, “Theoretical

foundations of the potential function method in pattern recognition
learning,” in Automation and Remote Control, 1964.

[2] N. Cesa-Bianchi and C. Gentile, “Tracking the best hyperplane with a
simple budget Perceptron,” in Annual Conference on Computational
Learning Theory, 2006.

[3] C. Chang and C. Lin. LIBSVM: alibrary for support vector machines,
2001. Available: http://www.csie.ntu.edu.tw/ cjlin/libsvm/.

[4] K. Crammer and J. Kandola and Y. Singer, “Online classification on a
budget,” in Advances in Neural Information Processing Systems, 2004.

[5] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz and Y. Singer,
“Online Passive-Aggressive Algorithms,” in Journal of Machine
Learning Research, 2006.

[6] O. Dekel and S. S. Shwartz and Y. Singer, “The Forgetron: A
kernel-based Perceptron on a budget,” in SIAM Journal on Computing,
2008.

[7] C. Gentile, “A New Approximate Maximal Margin Classification
Algorithm,” in Journal of Machine Learning Research, 2001.

[8] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online Learning with
Kernels,” in IEEE Transactions on Signal Processing, 2001.

[9] Y. Li and P. Long , “The relaxed online maximum margin algorithm,”
in Machine Learning, 2002.

[10] F. Orabona, J. Keshet and B. Caputo, "The Projectron: a Bounded
Kernel-Based Perceptron," in Internatinal Conference on Machine
Learning, 2008.

[11] F. Rosenblatt, “The Perceptron: A probabilistic model for information
storage and organization in the brain,” in Psychological Review, 1958.

[12] V. N. Vapnik, Statistical Learning Theory, John Wiley & Sons, Inc.,
1995.

[13] J. Weston, A. Bordes and L. Bottou, “Online (and Offline) on an Even
Tighter Budget,” in International Workshop on Artificial Intelligence
and Statistics, 2005.

3302

	Main Menu
	Table of Contents
	Conference Program
	Author Index
	Search This CD-ROM
	Print This Paper
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	IJCNN CD-ROM Help

