
Twin Vector Machines for Online Learning on a Budget ∗

Zhuang Wang Slobodan Vucetic†

Abstract
This paper proposes Twin Vector Machine (TVM), a con-
stant space and sublinear time Support Vector Machine
(SVM) algorithm for online learning. TVM achieves its fa-
vorable scaling by maintaining only a fixed number of ex-
amples, called the twin vectors, and their associated infor-
mation in memory during training. In addition, TVM guar-
antees that Kuhn-Tucker conditions are satisfied on all twin
vectors at any time. To maximize the accuracy of TVM,
twin vectors are adjusted during the training phase to ap-
proximate the data distribution near the decision bound-
ary. Given a new training example, TVM is updated in
three steps. First, the new example is added as a new twin
vector if it is near the decision boundary. If this happens,
two twin vectors are selected and merged into a single twin
vector to maintain the budget. Finally, TVM is updated
by incremental and decremental learning to account for the
change. Several methods for twin vector merging were pro-
posed and experimentally evaluated. TVMs were thoroughly
tested on 12 large data sets. In most cases, the accuracy of
low-budget TVMs was comparable to the state of the art
resource-unconstrained SVMs. Additionally, the TVM ac-
curacy was substantially larger than that of SVM trained on
a random sample of the same size. Even larger difference in
accuracy was observed when comparing to Forgetron, a pop-
ular kernel perceptron algorithm on a budget. The results
illustrate that highly accurate online SVMs could be trained
from large data streams using devices with severely limited
memory budgets.

1 Introduction
An objective of data mining is to develop efficient and
accurate algorithms for learning from large quantities
of data. Previous research has resulted in many suc-
cessful learning algorithms that scale linearly or even
sub-linearly with sample size and dimension, both in
runtime and in space. Interestingly, linear or even sub-
linear space scaling is often not sufficient, because it im-
plies an unbounded growth in memory with sample size.
This clearly opens another challenge: how to learn from
large, or practically infinite, data sets or data streams
using memory limited resources.

In this paper, we address the online learning on
a budget scenario with the following characteristics:
(1) independent and identically distributed training
examples are observed sequentially and in a single pass;

∗This work was supported by the U.S. National Science
Foundation Grant IIS-0546155.

†Center for Information Science and Technology, Tem-
ple University, Philadelphia, PA 19122, USA, email:
zhuang@temple.edu, vucetic@ist.temple.edu

(2) the learner can choose to maintain in the limited
memory any information about the observed examples;
(3) the learning should be anytime (i.e. produce
an accurate predictor upon unforeseen termination).
Evidently, there are many choices as to what the online
learner could maintain in the memory. The information
saved could include a sample of the observed examples,
their statistical summary, a prediction model, or any
combination of these.

At one end of the spectrum, we have a model-free
approach where only a sample or a summary of the ob-
served data is maintained. For example, the reservoir
sampling [16] can be used to maintain a random sample
from a data stream. Then, model trained can be done
off-line using the selected examples. Similarly, instead
of reservoir sampling, one can decide to use some type
of online clustering to better represent data diversity.
Although model-free approach is computationally effi-
cient, the caveat is that unsupervised sampling is often
not optimal with respect to the learning quality. At
the other end of the spectrum, we have a data-free ap-
proach where only the prediction model is saved in the
memory and updated as new examples are observed.
An example of the data-free approach is the perceptron
algorithm [10] that converges to the optimal classifier
when classes are linearly separable. This algorithm is
extremely efficient, both in time and space, but it is
applicable only to the very limited class of problems.
Most other approaches are hybrid in that they require
maintenance of both data and model in the memory.

An example of the hybrid approach for linear re-
gression is the recursive least squares algorithm [8] that
matches learning quality of the memory-unlimited batch
solution. In addition to the model weights, the algo-
rithm maintains a data summary in the form of an in-
formation or a covariance matrix. Therefore, it is a
constant space online algorithm with quadratic scal-
ing with the number of attributes. Development of a
similarly successful algorithm for nonlinear regression is
still an open problem. A representative of hybrid ap-
proaches in classification are budget kernel perceptrons
[2, 4, 5]. The kernel perceptrons are represented by a
subset of observed examples (i.e. support vectors) and
their weights, and the budget solution is achieved by en-
suring that the number of support vectors is bounded.

While there are theoretical guarantees for convergence
of budget kernel perceptrons for certain noise-free clas-
sification problems, their performance is often poor on
noisy classification problems.

In this paper, we propose a Support Vector Ma-
chine (SVM)[14] algorithm for online learning on a bud-
get. SVMs are a popular class of machine learning al-
gorithms that achieve superior accuracy on a number
of practical supervised learning problems. Most often,
SVM training is formulated as a quadratic programming
problem and its solution typically requires quadratic
space and cubic time scaling with sample size. Such
scaling is often unacceptable for data mining applica-
tions. Various solutions have been proposed [13, 15, 17]
to improve the time and space efficiency of SVMs and
make them applicable to very large data sets. While
these solutions achieve much better scaling in practical
applications, they still have an unbounded growth in
memory with the sample size. In addition, they require
multiple passes through the training data, which is not
acceptable in the online learning scenario.

The proposed algorithm, called Twin Vector Ma-
chine (TVM), is designed to handle arbitrarily large
data streams while operating under a fixed memory
budget. The basic idea of TVM is to upper bound the
number of support vectors during the whole learning
process. Each example kept in the memory, called the
twin vector, represents a summary of the training ex-
amples in its neighborhood and thus captures the lo-
cal data distribution. To optimally utilize the budget,
twin vectors are positioned near the decision bound-
ary, which is the most informative region of the input
space. The TVM and the set of twin vectors are up-
dated after each newly observed training example while
keeping the memory budget as follows. A new exam-
ple is added as a new twin vector if it is near the de-
cision boundary. If this happens, two twin vectors are
selected and combined into a single twin vector to main-
tain the budget. Finally, TVM is updated such that
Kuhn-Tucker conditions are satisfied on all twin vectors
at any time. To accomplish this, we used the solution
proposed in the online memory-unbounded Incremental-
Decremental SVM (IDSVM) [1] algorithm. It uses an
efficient adiabatic procedure to update the SVM upon
inclusion or deletion of a support vector. The resulting
TVM algorithm achieves constant space and linear time
scaling, and is very appropriate for online learning from
large data sets using a limited memory budget.

The paper is organized as follows. In §2, we give an
overview of SVMs and the incremental and decremental
learning. In §3, we introduce TVM and in §4 we describe
how they can be used for online learning on a budget.
§5 provides results of the thorough characterization of

TVM on a number of large data sets.

2 Preliminaries
2.1 SVM, Dual Formulation, and Kuhn-Tucker
Conditions. The SVM classifier is of the form f(x) =
w · Φ(x) + b, where Φ is a nonlinear mapping of the
attribute space, and is trained from data set D =
{(xi, yi), i = 1...N} by optimizing the primal problem

min 1
2 ||w||2 + C

∑
i

ξi

s.t. yi(w · Φ(xi) + b) ≥ 1 − ξi, ξi ≥ 0, ∀i ∈ {1, ..., N}
where ξi are the non-negative slack variables and C
is the non-negative slack parameter. In the dual
formulation of the optimization, the primal problem is
transformed to

min
0≤αi≤C

: W =
1
2

∑
i,j

αiQijαj −
∑

i

αi + b
∑

i

yiαi

where αi are the Lagrange multipliers associated
with the constraints of the primal problem, Qij =
yiyjK(xi, xj) are elements of the Gram matrix Q, and
K is the positive definite kernel function satisfying
K(xi, xj) = Φ(xi)T Φ(xj). The resulting SVM classi-
fier can be conveniently represented in the dual form
as

f(x) =
N∑

i=1

yiαiK(xi, x) + b

Partial derivatives of the objective function W of the
dual problem should satisfy the KT conditions

gi =
∂W

∂αi
= yif(xi) − 1

⎧⎨
⎩

> 0; αi = 0
= 0; 0 < αi < C
< 0; αi = C

and create a partition of the training data D into
three categories: the set S of margin support vectors
that are strictly on the margin (yif(xi) = 1), the
set E of error support vectors that violate the margin
(yif(xi) < 1), and the set R of reserve vectors that are
correctly classified and outside the margin (yif(xi) >
1). Therefore, the SVM model is represented by a set of
Lagrange multipliers αi and training examples for which
αi > 0 (margin and error support vectors).

2.2 Adiabatic SVM Updates [1]. Given the SVM
consisting of N support and reserve vectors and a new
example (xc, yc), [1] proposes how to change values of
αi, i = 1, ..., N , and b such that all KT conditions are
maintained. If the new example satisfies ycf(xc) > 1,
its αc value is set to zero, it is directly assigned to the
reserve vector set R, and there is no need to update

values of αi’s and b. Otherwise, αc becomes positive,
the new example becomes a member of either S or E
sets, and all values of αi’s and b should be updated.

By assuming that addition of the new example does
not change the assignment of the existing N support
and reserve vectors, only values of b and αi’s from the
margin support vector set S should be modified after
inclusion of the new example. The change in gi value of
an example from S set due to a positive value of αc is
expressed differentially

Δgi = Qicαc +
∑
j∈S

QijΔαj + yiΔb

0 = ycαc +
∑
j∈S

yjΔαj , ∀i ∈ D ∪ {c}(2.1)

Since Δgi = 0 for the margin support vector set S
with indices S = {s1, ..., sp} , where P is the number
of margin support vectors (set S), equations (2.1) could
be written in the matrix form as

J ·

⎡
⎢⎢⎢⎣

Δb
Δαs1

...
Δαsp

⎤
⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎣

yc

Qs1c

...
Qspc

⎤
⎥⎥⎥⎦αc

where J is symmetric Jacobian matrix

J =

⎡
⎢⎢⎢⎣

0 ys1 · · · ysp

ys1 Qs1s1 · · · Qs1sp

...
...

. . .
...

ysp Qsps1 · · · Qspsp

⎤
⎥⎥⎥⎦

Matrix J is the enlarged (by one row and column) Gram
matrix of the support vector examples. By inverting the
(P + 1) × (P + 1) matrix J , the updated values of αi’s
and b can be calculated for any value of αc.

There are two remaining issues with implementa-
tion of the adiabatic procedure. The first is finding
the optimal value of αc as the value that minimizes the
objective function W . This is accomplished by slowly
increasing its value starting from zero as long as W de-
creases. The second is taking care of the occasional need
to reassign examples among the S, E, and R sets due to
increase in αc. That is accomplished by careful book-
keeping described in detail in [1]. It is worth mentioning
that each bookkeeping step results in incrementing (an
example is moved from R or E to S) or decrementing
(an example is moved from S to R or E) the Jacobian
matrix J by one row and column. After each update
of J due to bookkeeping its inverse should also be up-
dated. Decremental unlearning (removing any example
from the training set) is implemented through adiabatic
reversal of incremental learning.

2.3 Costs of an Adiabatic Update. During each
incremental or decremental step, the major computa-
tional cost is in calculating the inverse of Jacobian ma-
trix J . Instead of directly inverting J that would take
O(P 3) time, a recursive procedure is used that uti-
lizes the previously calculated inverse of J , in which
J differed by a single row and column. The cost of
the inversion in such case scales as O(P 2). Assum-
ing that the amount of bookkeeping at each incremen-
tal/decremental step is upper bounded (reasonable as-
sumption in practice), the runtime of incremental learn-
ing/decremental unlearning of a single example scales as
O(P 2).

For the memory requirement, an adiabatic update
requires to keep the (P + 1) × (P + 1) inverse of the
Jacobian matrix J , the N × (K + 1) matrix of support
and reserve vectors, where K is the number of attributes
(to be able to update J−1 when a new example arrives,
regardless of the future assignments of vectors to S, E,
and R sets), the N ×P Gram matrix (for bookkeeping),
the N × 1 vector of g values, and the N × 1 vector
of Lagrange multipliers α. Assuming the number of
margin support vectors P scales as O(N), both space
and runtime of the adiabatic update scale as O(N2).

3 Twin Vector Machine

3.1 Twin Vectors. The idea for TVM comes from
vector quantization where each example is represented
by its quantized version. We will now illustrate how
this idea leads to the constant space and linear time
SVM. Let us assume that we are given B prototype
attribute vectors q1, ..., qB and that each training ex-
ample is represented by its nearest prototype. For
the moment, we will not worry about how the pro-
totypes are selected; we will address this question in
§4. Through the prototype representation, the origi-
nal training data set D = {(xi, yi), i = 1...N} is trans-
formed to Q(D) = {(Q(xi), yi), i = 1...N}, where Q is
the quantization function defined as Q(x) = {qk, k =
argminj=1:B ||x−qj ||}. We note that the assignment to
the nearest prototype results in the minimization of at-
tribute distortion, defined as E(||X−Q(X)||2). Clearly,
as the number of prototypes B grows, it is expected that
the attribute distortion decreases.

Training SVM on N quantized examples from Q(D)
reduces to solving the following primal problem,

min 1
2 ||w||2 + C

∑
j

(s+
j ξ+

j + s−j ξ−j)

s.t.
wΦ(qj) + b ≥ 1 − ξ+

j ,

−(wΦ(qj) + b) ≥ 1 − ξ−j ,

ξ+
j , ξ−j ≥ 0, j = {1, ..., B},

where s+
j and s−j are the numbers of positive and

negative examples quantized to prototype qj , and ξ+
j

and ξ−j are the corresponding slack variables. There-
fore, prototype qj is represented by two weighted ex-
amples, a positive example (qj , +1, s+

j) and a nega-
tive example (qj ,−1, s−j). We call the pair TVj =
{(qj , +1, s+

j), (qj ,−1, s−j)} the Twin Vector. Training
an SVM on N quantized examples from Q(D) is anal-
ogous to training an SVM on the set of B twin vectors
TV = {TVj, j = 1...B}. Thus, from the perspective of
SVM training, Q(D) = TV .

After transformation to the dual problem the KT
conditions become

g+
i =

∂W

∂α+
i

= yif(qi) − 1

⎧⎨
⎩

> 0; α+
i = 0

= 0; 0 < α+
i < s+

i C
< 0; α+

i = s+
i C

,

where yi = +1, such that the feasible range of each
Lagrange multiplier depends on s+

i weights. The similar
conditions apply to g−i , with the only difference that
yi = −1.

It should be noted that many SVM algorithms, in-
cluding IDSVM [1], can incorporate weights into opti-
mization in a straightforward fashion. Thus, weights of
twin vectors s+

i and s−i do not add to the complexity of
SVM training. We call the SVM trained on TV set of
twin vectors the offline Twin Vector Machine (TVM).
The resulting offline TVM predictor can be expressed
as

TV M(x) =
∑

j

(α+
j − α−

j)K(qj , x) + b.

Let us discuss computational costs of offline TVM
training with fixed pivot vectors. Because the Q(D) can
be regarded as a data set with 2B weighted examples,
the solution of the quadratic programming problem
would have O(B3) runtime and require O(B2) memory,
which implies constant runtime and constant memory
scaling with N . By adding the costs of converting D
to Q(D) the runtime becomes O(B3) + O(N) which
represents linear scaling with data size N .

4 Twin Vector Machine for Online Learning on
a Budget

In §3 we showed that quantization of the original data
set D to B twin vectors allows SVM training with
linear time and constant space scaling with data size.
Throughout the section we assumed that the set of B
pivot vectors was known and fixed. A natural question
addressed in this section is how to choose the pivot
vectors in an online fashion. Our idea is to adaptively
change the pivot vectors such that they are positioned
near the decision boundary. The details of the resulting

online TVM (or TVM, for short) algorithm for online
training on a budget are as follows.

4.1 The Algorithm. The outline of the algorithm
is shown in Algorithm 1. After initializing the TVM
to zero predictor and setting TV to empty, examples
from the stream are read sequentially. For each observed
example, we determine if it is useful, using the Beneficial
routine. If the example is useful, it is added to
the reservoir and the twin vector set TV is updated
to maintain the budget (UpdateTV). Then, TVM is
updated to account for the changes in TV using the
incremental and decremental learning (UpdateTVM).

Algorithm 1 TVM
Input: Data stream D = {(xi, yi), i = 1...N}, budget
B, kernel function K, slack parameter C
Output: TVM with parameters α+

1 , α−
1 , ..., α+

B, α−
B,

b
TV M = 0, TV = �
for i=1 to N do

if Beneficial(xi) then
UpdateTV
UpdateTV M

end if
end for

The basic idea of Beneficial, which is consistent with
the successful approaches for active learning with SVMs
[11, 12], is that examples that are near the decision
boundary (i.e., |TV M(x)| is small) are most informa-
tive. Ignoring examples that are far beyond the margin
is justified at two levels: positively classified examples
are reserve vectors that are not likely to become support
vectors, while negatively classified examples are error
support vectors that are most likely noisy and with a
negative influence on the classification accuracy. Algo-
rithm 2 describes the Beneficial routine. The first B
observed examples are labeled as beneficial by default.
Others are labeled as beneficial if the absolute value of
their TVM prediction is below threshold m1. As a de-
fault value, we use m1 = 1 that results in acceptance of
new examples only if they are within the margin of the
current TVM.

Algorithm 2 Beneficial

if size(TV) < B or |TV M(xi)| ≤ m1 then
return 1

else
return 0

end if

UpdateTV (Algorithm 3) updates the twin set TV .

It starts by creating the overflow twin vector TVB+1

from the observed example (xi, yi), where qB+1 = xi,
s+

B+1 = 1 and s−B+1 = 0 if yi = +1, and s+
B+1 = 0 and

s−B+1 = 1 if yi = −1. If there is a space in the reservoir,
the overflow twin is added to it. If the reservoir is full
(TV has B twin vectors), its twin vectors have to be
modified. UpdateTV recognizes two scenarios. In case
when there is a twin vector that is sufficiently beyond
the margin (i.e., |TV M(qj)| > m2), UpdateTV removes
it to make space for the overflow twin. The threshold
m2 is selected such that m2 > m1 (its default value is
set to 2, see Figure 1.a) in order to create a buffer zone
that prevents premature removal of potentially useful
twins.

In case when all B twin vectors are within the buffer
zone, UpdateTV selects two twin vectors TVi and TVj

and merges them to create a new twin vector TVnew

that replaces them. Details of how the two twin vectors
are selected are given in §4.2.

Algorithm 3 UpdateTV

s = size(TV)
TVB+1 = {(xi, yi, 1), (xi,−yi, 0)}
if s < B then

TVs+1 = TVB+1

else if maxi=1:B |f(qi)| > m2 then
k = arg maxi=1:B |f(qi)|
TVk = TVB+1

else
find the best pair TVi, TVj(i < j) to merge
TVi = {(qnew, +1, s+

i + s+
j), (qnew ,−1, s−i + s−j)}

TVj = TVB+1

end if

The outcome of UpdateTV can be addition of a new
twin vector, replacement of a twin vector with the over-
flow twin, or replacement of one or two twin vectors
through merging. UpdateTVM performs decremental
unlearning of the removed twin vector(s) and incremen-
tal learning of the added twin vector(s) such that Kuhn-
Tucker conditions are satisfied on all twin vectors during
the online learning.

4.2 Merging Methods. In this section we discuss
several methods for selecting the best twin vectors for
merging in UpdateTV.

4.2.1 Merging in Input Space. In case when all B
twin vectors within the buffer zone, UpdateTV selects
two twin vectors TVi and TVj and merges them to create
a new twin vector TVnew that replaces them. Given TVi

and TVj , one approach is to calculate the pivot vector of
TVnew, qnew, to minimize distortion in the input space

defined as

d = si||qi − qnew||2 + sj ||qj − qnew ||2,

where si = s+
i + s−i and sj = s+

j + s−j . It follows that
the optimal qnew is

qnew =
siqi + sjqj

si + sj
,

and that the resulting minimal distortion, denoted as
d∗ij is

d∗ij =
sisj ||qi − qj ||2

si + sj
.

The best pair TVi and TVj of twin vectors to merge is
the one that has minimal d∗ij value.

Although it seems that merging in input space re-
quires O(B2) time and memory, it is evident that, with
some bookkeeping from the previous calls to UpdateTV ,
both costs can be reduced to O(B) in expectation. In
fact, for each twin vector TVi, we memorize index k of
its best merging neighbor, defined as k = argminjd

∗
ij ,

together with distortion d∗ik. After UpdateTV , we calcu-
late distortions between the newly created twin vectors
and the unchanged twin vectors and use that to modify
the memorized indices and distortions.

4.2.2 Merging in Feature Space. An alternative
to merging in input space is merging in feature space.
Let us denote Φ as the mapping of the input space
to a feature space induced by the kernel function K,
such that K(x, y) = Φ(x)T Φ(y). Given TVi and TVj,
the goal is to find qnew that minimizes feature space
distortion defined as

d = si||Φ(qi) − Φ(qnew)||2 + sj ||Φ(qj) − Φ(qnew)||2.

Similarly to results of §4.2.1, the optimal Φ(qnew) is

Φ(qnew) =
siΦ(qi) + sjΦ(qj)

si + sj
.

The challenge with feature space merging is that the
pre-image of Φ(qnew) may not exist (as is the case with
RBF kernels). As proposed in [9], this issue can be
addressed by finding the approximate solution q′new by
minimizing

min
q′

new

||Φ(q′new) − siΦ(qi) + sjΦ(qj)
si + sj

||2.(4.2)

The general solution of (4.2) is hard to achieve since
it requires nonlinear optimization that depends on the
choice of kernel. In [9], an algorithm was developed to

 ← −1

 ← 0

 ← +1

 ← −2

 ← −2

buffer

buffer

(a)

 ← −1

 ← 0

 ← +1

 ← GlobalMerge

 ← OneSideMerge

TV2

TV1

TV3

(b)

 ← +1

 ← 0

 ← −1

TVnew TV2

TV1

(c)

Figure 1: Figures of Buffer, Merging and Rejection

solve (4.2) for RBF and polynominal kernels. Interest-
ingly, in both cases, q′new lies on the line connecting qi

and qj .
Due to the increased computational costs of feature

space merging, TVM uses input space merging as the
default choice.

4.2.3 Global versus One-Sided Merging. With-
out an additional constraint, TVM allows merging of
twin vectors across the decision boundary. Potential is-
sue with such merging is loss of margin support from the
original twin vectors and creation of a new twin near
the boundary with nearly equal positive and negative
weights. This can be harmful to the quality of TVM. In
One-Sided merging the twin vectors are separated into

those in the positive region, TV M(qi) > 0, and the neg-
ative region, TV M(qi) < 0. Only pairs of twin vectors
from the same region are considered for merging. As
an illustration, although merging of TV1 and TV2 from
Figure 1.b would result in the smallest distortion, One-
Sided would merge TV1 and TV3. One-Sided merging
is the default choice in TVM.

4.2.4 Merging Rejection. Merging can be inappro-
priate in the regions of the input space where TVM de-
cision boundary is highly nonlinear. For example, merg-
ing of twin vectors TV1 and TV2 from Figure 1.c that
are at the positive margin results in TVnew that is well
beyond the negative margin. We note that this behav-
ior is common to both input and feature space merg-
ing. To avoid negative effects of such merging, we com-
pare value of TV M(qnew) to its estimated value under
the linear assumption, T̂ V M(qnew) = (siTV M(qi) +
sjTV M(qj))/(si + sj). Rejection accepts the merging
if TV M(qnew) is near its estimated value,

(1−η)T̂ V M(qnew) < TV M(qnew) < (1+η)T̂ V M(qnew),

where η = 0.2 is used as the default value. If the selected
pair of twin vectors fails the test, Rejection considers the
next best merging candidates. If they pass the test, the
merging is executed. Otherwise, UpdateTV concludes
that merging cannot be successfully performed and the
overflow twin is simply ignored.

4.3 Control of C. In the online learning on a bud-
get, an additional challenge is the choice of the slack
parameter C, that controls the tradeoff between model
complexity and training error. For a fixed C, the in-
fluence of training error would grow with data stream
size due to increase in weights s+

j and s−j of twin vec-
tors. Compounded with the bounded number of twin
vectors in TVM, which constrains its representational
power (TVM could span at most a B-dimensional man-
ifold in the feature space), fixed C would lead to over-
fitting.

To address this issue, we dynamically adjust C

such that the product C
∑
j

(s+
j + s−j) is kept constant

during the online learning process. Adjusting TVM
with respect to a change in C could be done efficiently
using path regularization techniques [7]. In TVM, we
use regularization parameter permutation [6] which is a
method implemented in IDSVM algorithm.

4.4 Costs of TVM Online Training. The memory
requirement of TVM is constant in sample size and
scales as O(B2) with the budget B. It consists of three
routines which have different runtimes. The Beneficial

needs to provide TVM prediction for a new example
and it has O(B) runtime. In the worst case, UpdateTV
has to perform merging. Finding the best pair of twin
vectors for merging requires O(B) expected runtime
subject to appropriate bookkeeping from previous calls
of UpdateTV. Dynamically adjusting C takes O(B)
time. Finally, the runtime of UpdateTVM is O(B2).
The total runtime is therefore O(NB + nB2), where
n is the number of examples among the N observed
examples which are selected by Beneficial. Observe that
ratio n/N is initially close to 1 and that it decreases
with N when threshold m1 is at its default value 1.
This is because margin decreases with N and Beneficial
becomes more and more selective. Since nB2 dominates
the runtime and n = O(N), the total runtime appears
sublinear in N .

5 Experimental Results

In this section, we present results of detailed evaluation
of TVM on a number of benchmark datasets.

5.1 Data Sets. Properties of 12 benchmark data sets
for binary classification are summarized in Table 1. The
multi-class data sets were converted to two-class sets as
follows. For the digit datasets Pendigits and USPS we
converted the original 10-class problems to binary by
representing digits 1, 2, 4, 5, 7 (non-round digits) as
negative class and digits 3, 6, 8, 9, 0 (round digits) as
positive class. For Letter dataset, negative class was
created from the first 13 letters of the alphabet and
positive class from the remaining 13. The 7-class Shuttle
data set was converted to binary data by representing
class 1 as negative and the remaining ones as negative.
Class 1 in the 3-class Waveform was treated as negative
and the remaining two as positive. For Covertype data
the class 2 was treated as positive and the remaining 6
classes as negative. Adult, Banana, Gauss, and IJCNN
were originally 2-class data sets. Checkerboard data was
generated as a uniformly distributed two-dimensional
4 × 4 checkerboard with alternating class assignments
(see Figure 3). Checkerboard is a noise-free data set in
the sense that each box consists exclusively of examples
from a single class. N-Checkerboard is a noisy version
of Checkerboard where class assignment was switched
for 15% of the randomly selected examples. For both
data sets, we used the noise-free Checkerboard as the
test set. In this way, the highest reachable accuracy
for both Checkerboard and N-Checkerboard was 100%.
Attributes in all data sets were scaled to mean zero and
standard deviation 1.

5.2 Evaluation Procedure. We used three SVM al-
gorithms (LIBSVM [3], IDSVM [1], and TVM) and one

Table 1: Data set summaries
Datasets Training Size Test Size Attributes

Adult 21048 9114 123
Banana 4300 1000 2

Checkerboard 100000 5000 2
N-Checkerboard 100000 5000 2

Covertype 100000 10000 54
Gauss 100000 5000 2
IJCNN 49990 91701 22
Letter 16000 4000 16

Pendigits 7494 3498 16
Shuttle 42603 14167 9
USPS 7291 2007 256

Waveform 100000 5000 21

kernel perceptron algorithm (Forgetron [5]) in the ex-
periments. Because IDSVM is a memory-unconstrained
online algorithm it served as an upper bound on ac-
curacy achievable by TVM. LIBSVM, one of the most
successful batch-mode SVM algorithms, is both highly
accurate and computationally efficient. Although it is
not an online algorithm, we thought that its inclusion
can be informative for evaluation of TVM. In addition,
we also used the Self-Tuned Forgetron algorithm [5], a
popular kernel perceptron algorithm for online learning
on a budget. For TVM experiments, we evaluated five
different budgets, B = 20, 50, 100, 200, 500. The default
TVM parameters m1 = 1, m2 = 2, and η = 0.2, with
InputSpace, OneSided and Rejection merging were used
in all the experiments. Training examples were ordered
randomly. Additionally, we also trained IDSVM on a
random sample of size B = 100 from training data and
denoted it as Random. It represents the model-free on-
line learning approach and serves as a lower bound on
the accuracy achievable by TVM.

We performed three set of experiments on 12 data
sets with three different kernels: linear kernel K(x, y) =
xy, RBF kernel K(x, y) = exp(−||x−y||2

2δ), and polyno-
mial kernel K(x, y) = (xy + 1)d. Although different
kernels might be appropriate for different data sets, our
goal was to compare behavior of the SVM algorithms
over a large range of conditions. To keep things simple,
and consulting previous SVM evaluations [15], LIBSVM
and IDSVM used the slack parameter C = 1 for Adult
and C = 100 for the remaining 11 data sets. Similarly,
following the strategy explained in section 4.3, TVM
kept the product of C and the sum of twin weights at
B for Adult and at 100B for the remaining 11 data
sets. RBF kernel width δ was set to δ = K/2 [3], where
K is the number of attributes, for all data sets but the
two Checkerboard data sets. There, the width was set to
0.37. Polynomial kernel degree d was set to 3 in all data

100

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5 −5

−4

−3

−2

−1

0

1

2

3

4

5

(a) 100 observed

1000

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5 −8

−6

−4

−2

0

2

4

6

8

(b) 1000 observed

10000

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5 −8

−6

−4

−2

0

2

4

6

8

(c) 10000 observed

10 million

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5
−10

−8

−6

−4

−2

0

2

4

6

8

10

(d) 10 million observed

10
2

10
3

10
4

10
5

10
6

10
7

0.75

0.8

0.85

0.9

0.95

1

Length of data stream (in log scale)

A
cc

ur
ac

y

10 million N−Checkerboard

LIBSVM
IDSVM
TVM B=100

(e) accuracy comparison

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000
10 million N−Checkerboard

Length of data stream

C
om

pu
ta

tio
n

tim
e(

in
 s

ec
on

ds
)

TVM B=100
IDSVM

(f) time comparison

Figure 2: TVM(B=100) solutions on 10 million N-Checkerboard data.

sets instead the two Checkerboard data sets. There, the
degree was set to d = 7 because of the complexity of the
problem. For the Forgetron, RBF kernel width was dif-
ferently tuned for better performance. All experiments
were run on a 3G RAM, 3.2GHz Pentium Dual Core 2
PC.

5.3 TVM Trained on 10 Million N-
Checkerboard Examples. In Figures 2.a-d we
illustrate the TVM solutions with budget B = 100 and
RBF kernel after N = 100, 1000, 10000, and 10 million
examples were observed from the data stream. Yellow
and cyan lines are positive and negative margins,
respectively. Black line is the TVM boundary, and Red
circles are Twin Vectors. It can be seen that the TVM
decision boundary dramatically improved during the
process. This success can be attributed to the improved
positioning of twin vectors near the decision boundary.
It is interesting to observe that the TVM margin
gradually decreased during the procedure. The solution
for N = 100 (Figure 2.a) corresponds to Random and it
is evident that TVM managed to substantially improve
its accuracy by careful choice of twin vectors.

In Figure 2.e we compare accuracies of IDSVM,
LIBSVM, and TVM with B = 100 as a function of the
stream size. IDSVM was suspended after N = 10, 000

examples and LIBSVM was trained on N = 100, 000
examples because the resource limits of our PC were
reached at these values. As seen, TVM had similar
accuracy to IDSVM at N < 10, 000 and to LIBSVM
at N = 100, 000, and its accuracy steadily increased to
the impressive 98.7% at N = 107. Finally, in Figure 2.f,
we compare the runtime of TVM with the runtime of
IDSVM algorithm at N < 10, 000. It could be observed
that the TVM runtime appears linear while the IDSVM
runtime appears cubic, as expected.

5.4 Results on Benchmark Data Sets. In this
section we summarize performance results on all 12
benchmark data sets. Each result listed in Tables 2,
3, 4 is an average of 5 repeated experiments. The first
three columns of Table 2 compare the runtime of TVM
with budget B = 100, LIBSVM, and IDSVM. The last
three columns show number of support/twin vectors
in the final TVM, LIBSVM, and IDSVM classifiers.
To speed-up the experiments, we decided to terminate
IDSVM after 3,000 seconds. In this case, in the last
column we report the number of support vectors and
how many training examples were processed by the
time of stopping. The runtime of IDSVM was about
two orders of magnitude larger than for LIBSVM. This
difference was largely caused by the fact that IDSVM is

Table 2: The summary of training time and # of SVs/TVs with RBF kernel. (* means early stopped after 3,000
seconds. Superscript values indicate # of examples learned before early stopped.)

Data sets Training time (in seconds) # of SVs/TVs
(RBF Kernel) TVM LIBSVM IDSVM TVM LIBSVM IDSVM

Adult 230 395 ∗ 100 8578 32237200

Banana 21 1 54 100 960 1015
Checkerboard 1406 112 ∗ 100 4073 34107560

N-Checkerboard 1778 3604 ∗ 100 51230 544010000

Covertype 1709 13100 ∗ 100 38790 26175400

Gauss 774 3940 ∗ 100 39650 32125400

IJCNN 122 231 ∗ 100 2103 125723400

Letter 138 5 ∗ 100 2075 12616800

Pendigits 33 2 168 100 639 641
Shuttle 11 5 601 100 189 384
USPS 186 24 1621 100 1077 1081

Waveform 304 38673 ∗ 100 24905 249710000

Table 3: Accuracy(×100%) comparison on 12 large data sets by RBF kernel.(Superscript values indicate # of
training examples learned by IDSVM after 3,000 seconds.)

Data sets Forgetron Random LIBSVM IDSVM TVM with different budgets
(RBF) B=100 B=100 B = ∞ B = ∞ B=20 B=50 B=100 B=200 B=500

Adult 80.7 79.5 84.3 84.0 83.0 82.9 82.1 82.8 83.7
Banana 83.7 86.9 90.2 91.6 87.5 88.3 89.8 89.8 89.9

Checkerboard 82.4 82.9 99.8 99.77560 75.0 91.3 98.1 98.4 99.0
N-Checkerboard 70.3 72.9 96.9 95.810000 73.3 91.4 97.1 97.7 98.8

Covertype 56.4 64.4 85.3 80.55400 66.9 71.4 76.5 77.9 79.6
Gauss 77.3 78.7 81.5 80.75400 81.3 81.3 81.1 81.4 81.8
IJCNN 88.1 90.3 98.7 98.423400 93.1 95.8 97.0 97.4 97.9
Letter 73.1 71.9 93.2 95.06800 76.5 82.5 87.6 90.3 92.0

Pendigits 96.6 93.9 99.5 98.7 96.6 98.7 99.1 99.1 99.2
Shuttle 99.4 98.3 99.9 99.9 99.7 99.6 99.8 99.8 99.8
USPS 83.9 86.8 96.1 96.7 85.0 88.5 92.1 93.5 95.0

Waveform 82.5 85.4 87.9 89.010000 86.9 86.1 87.7 88.5 88.8

(Average of all) 81.2 82.7 92.8 92.5 83.7 88.2 90.7 91.4 92.1

Table 4: Accuracy(×100%) comparison on 12 large data sets by polynomial & linear kernels. (Superscript values
in IDSVM column indicate # of training examples learned by IDSVM after 3,000 seconds.)

Data sets
Polynomial Linear

Forgetron Random IDSVM TVM Forgetron Random IDSVM TVM
B=100 B=100 B=∞ B=100 B=100 B=100 B=∞ B=100

Adult 71.8 78.1 72.47200 81.2 61.9 74.4 84.58600 81.3
Banana 61.6 76.2 76.3 83.0 48.8 55.1 54.2 56.4

Checkerboard 54.1 81.9 99.867600 91.1 49.8 48.7 49.75400 51.7
N-Checkerboard 49.2 71.6 69.97600 93.9 50.0 48.8 49.23200 50.8

Covertype 60.0 59.1 71.66000 73.9 59.4 66.9 75.710400 75.6
Gauss 71.4 78.6 80.915400 81.1 65.7 75.4 76.214800 76.9
IJCNN 84.1 88.0 95.123800 96.9 52.5 89.8 92.1 94.2
Letter 68.5 68.0 88.6 84.7 63.9 66.8 72.211200 72.5

Pendigits 95.0 93.2 98.3 98.8 82.6 85.9 90.7 90.1
Shuttle 93.7 95.9 99.9 99.6 86.6 95.9 98.1 98.1
USPS 83.3 86.6 95.8 92.8 75.4 78.7 86.66600 83.8

Waveform 75.9 78.3 81.64600 86.6 65.1 79.6 85.217400 85.3

(Average of all) 72.4 79.6 85.9 88.6 63.5 72.2 76.2 76.4

Table 5: Accuracy(×100%) comparison of different TVM versions. (Superscript values indicate # of training
examples learned by IDSVM after 3,000 seconds; numbers in italics in TVM columns indicate that accuracy is
more than 3% smaller than for the default TVM.)

Data sets Random IDSVM TVM with different heuristics(B=100)
(RBF Kernel) B = 100 B = ∞ Default [-1 1] [-2 2] NoRejection Global FeatureSpace

Adult 79.5 84.0 82.1 81.4 80.5 83.2 82.3 81.8
Banana 86.9 91.6 89.8 88.7 89.8 90.5 90.4 90.3

Checkerboard 82.9 99.77560 98.1 97.3 95.2 97.9 95.5 97.4
N-Checkerboard 72.9 95.810000 97.1 97.1 89.1 97.2 94.6 96.9

Covertype 64.4 80.55400 76.5 76.6 72.7 75.6 70.3 76.0
Gauss 78.7 80.75400 81.1 81.2 81.2 81.2 81.2 81.2
IJCNN 90.3 98.423400 97.0 97.3 92.1 90.0 95.9 96.8
Letter 71.9 95.06800 87.6 87.5 78.4 78.8 80.4 86.9

Pendigits 93.9 98.7 99.1 98.9 93.0 98.8 98.6 99.2
Shuttle 98.3 99.9 99.8 99.8 98.0 99.8 99.8 99.8
USPS 86.8 96.7 92.1 91.7 84.3 81.9 91.1 91.9

Waveform 85.4 89.010000 87.7 87.1 83.2 84.3 88.1 87.6

(Average of all) 82.7 92.5 90.7 90.4 86.5 88.3 89.0 90.5

implemented in Matlab, while LIBSVM is implemented
in C++. We note that TVM was also implemented
in Matlab by borrowing many of the IDSVM routines.
This explains why TVM was faster than LIBSVM on the
largest data sets, despite its inferiority on the smallest
data sets. On the other hand, TVM was clearly much
faster than IDSVM on all data sets. Both LIBSVM and
IDSVM classifiers had comparable number of support
vectors that was in most cases much larger than the
TVM’s budget of 100 twin vectors.

In Table 3 we compare accuracies of the compet-
ing algorithms using RBF kernels, while in Figure 3
we illustrate how the accuracy of TVM and IDSVM
depended on the number of observed training exam-
ples. As expected, the memory-unbounded LIBSVM
and IDSVM had the highest accuracy. The two accu-
racies were quite similar and the small advantage of
LIBSVM could probably be attributed to occasional
early stopping of IDSVM. Importantly, TVM accura-
cies were very competitive and, in most cases, compa-
rable to the memory-unbounded SVMs. TVM accura-
cies consistently increased with budget B. It is worth
noting that TVM achieved impressive accuracies for a
very modest budget of B = 100, while the still mod-
est budget of B = 500 closely matched the accuracies
of the memory-unlimited competitors. Compared with
the baseline Random algorithm, TVM with B = 100
was considerably more accurate. In fact, even TVM
with B = 20 was superior to it. Interestingly, Forgetron
with B = 100 was not impressive.

Let us briefly discuss some specific results from Ta-
ble 3. TVM was the most accurate classifier on N-
Checkerboard data. This can be explained by a very

high noise level in the data, which TVM managed to
control by ignoring the twin vectors outside the margin
and by merging which revealed the class distribution.
Similar behavior was observed on other two noisy data
sets, Gauss and Waveform. In this case, TVM with a
tiny budget of B = 20 was equally successful to LIB-
SVM that created tens of thousands of support vectors.
At the other end of the spectrum are Letter, USPS, and
Covertype data that represent highly complex concepts
and have a low to modest level of noise. On Letter and
USPS, accuracy of TVM consistently and significantly
increased with the budget size and with B = 500 it
came close to that of LIBSVM and IDSVM. On Cover-
type, the difference was large even with B = 500, which
is understandable considering that 40% of the 100,000
training examples were used as support vectors in LIB-
SVM.

A glance at Figure 3 reveals further details specific
for each of the benchmark data sets. It reveals another
strength of TVM: for every choice of budget B and every
data set, the accuracy of TVM consistently grew with
the data stream size and was significantly larger than
Random (represented by the initial point of each TVM
curve).

Table 4 compares accuracies of four competing al-
gorithms with polynomial and linear kernels. It is evi-
dent that the accuracies were consistently and substan-
tially lower than when RBF kernel was used. Moreover,
some results for the polynomial kernels appeared quite
erratic. This clearly indicates that RBF kernel is the
most suitable choice for the 12 data sets we examined.
Despite this, the relative differences between the 4 al-
gorithms were consistent with the results in Table 3.

10
1

10
2

10
3

10
4

10
5

0.75

0.8

0.85
Adult

Length of data stream (in log scale)

A
cc

ur
ac

y

TVM B=20
TVM B=100
TVM B=500
IDSVM
LIBSVM

(a)

10
1

10
2

10
3

10
4

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92
Banana

Length of data stream (in log scale)

A
cc

ur
ac

y
(b)

10
1

10
2

10
3

10
4

10
5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

N−Checkerboard

Length of data stream (in log scale)

A
cc

ur
ac

y

(c)

10
1

10
2

10
3

10
4

10
5

0.5

0.6

0.7

0.8

0.9

1

Length of data stream (in log scale)

A
cc

ur
ac

y

N−Checkerboard

(d)

10
1

10
2

10
3

10
4

10
5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
Covertype

Length of data stream (in log scale)

A
cc

ur
ac

y

(e)

10
1

10
2

10
3

10
4

10
5

0.7

0.72

0.74

0.76

0.78

0.8

Gauss

Length of data stream (in log scale)

A
cc

ur
ac

y

(f)

10
1

10
2

10
3

10
4

10
5

0.88

0.9

0.92

0.94

0.96

0.98

1
IJCNN

Length of data stream (in log scale)

A
cc

ur
ac

y

(g)

10
1

10
2

10
3

10
4

10
5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Letter

Length of data stream (in log scale)

A
cc

ur
ac

y

(h)

10
1

10
2

10
3

10
4

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Pendigits

Length of data stream (in log scale)

A
cc

ur
ac

y

(i)

10
1

10
2

10
3

10
4

10
5

0.9

0.92

0.94

0.96

0.98

1
Shuttle

Length of data stream (in log scale)

A
cc

ur
ac

y

(j)

10
1

10
2

10
3

10
4

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
USPS

Length of data stream (in log scale)

A
cc

ur
ac

y

(k)

10
1

10
2

10
3

10
4

10
5

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9
Waveform

Length of data stream (in log scale)

A
cc

ur
ac

y

(l)

Figure 3: The accuracy comparison on 12 large datasets. (Budget=20,100,500 for TVM)

Namely, TVM accuracy with B = 100 was quite com-
parable to IDSVM, and it was much higher than accu-
racies of Forgetron and Random. This result indicates
that the impressive TVM performance is not a function
of the specific kernel choice.

5.5 Evaluation of TVM Default Parameters.
Table 5 compares performance of the default TVM with
TVM where some alternative choices were made. In all
cases, the budget was set to B = 100 and RBF kernel
was used. The first two columns serve as the lower and
upper bound on accuracy. The third column is TVM
with default values. The alternatives kept all but one of
the default choices intact. As could be seen, the default
TVM had the highest overall accuracy. Reducing m2

from 2 to 1 (column 4) removed the buffer zone and
it negatively impacted the accuracy. Choice of m1

appears very important because its increase from 1 to
2 (column 5) resulted in the largest drop in accuracy.
This was probably caused because m1 = 2 prevented
reduction in margin size. Rejection merging appeared
highly successful because its omission (column 6) caused
substantial drop in accuracy (it was especially large
on IJCNN, Letter, and USPS). Similarly, omission of
One-Sided merging (column 7) negatively impacted the
accuracy. Finally, feature space merging (column 8)
resulted in practically the same accuracy to input space
merging. This outcome justifies the default choice of
input space merging which is computationally cheaper.
All these results indicate that the proposed merging
strategies are highly successful and that each of them
significantly contributes to the success of TVM.

6 Conclusion

In this paper we presented a novel SVM algorithm called
TVM for online learning on a budget. TVM achieves
sublinear training time and constant space scaling with
the data stream size. Experimental results showed that
TVM achieves highly competitive accuracy as compared
to the memory-unbounded SVM algorithms. This hints
at the possibility of building accurate SVM classifiers
from very large data streams while operating under
a very limited memory budget. Furthermore, TVM
results in very compact SVM predictors and it directly
addresses a problem often observed in practice where
the size of SVM grows with the training data size. There
are several questions for future research. TVM was
evaluated on data streams that were sampled randomly
from the underlying distribution. The open question
is how robust TVM is when this assumption is broken.
Another question is related to the quadratic memory
scaling of TVM with budget size. Kernel perceptrons
are popular algorithms whose memory scales linearly

with the budget. As seen, performance of the state
of the art Forgetron algorithm was not impressive. It
would be interesting to explore if some of the ideas used
in TVM could improve performance of kernel perceptron
algorithms. Finally, lossy data compression is another
way of addressing the memory constraint. An open
question is whether and how data compression could
be integrated with data mining algorithms to further
improve the computational footprint of kernel based
supervised algorithms.

References

[1] G. Cauwenberghs and T. Poggio, Incremental and
Decremental Support Vector Machine Learning, NIPS,
2000.

[2] N. Cesa-Bianchi and C. Gentile, Tracking the best
hyperplane with a simple budget perceptron, Annual
Conference on Computational Learning Theory, 2006.

[3] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a
library for support vector machines, 2001.

[4] K. Crammer and J. Kandola and Y. Singer, Online
classification on a budget, NIPS, 2004.

[5] O. Dekel and S. S. Shwartz and Y. Singer, The
Forgetron: A kernel-based Perceptron on a budget,
SIAM J. Comput., 2008.

[6] C. P. Diehl and G. Cauwenberghs, SVM incremental
learning, adaptation and optimization, IJCNN, 2003.

[7] T. Hastie, S. Rosset, R. Tibshirani and J. Zhu, The en-
tire regularization path for the support vector machine,
Journal of Machine Learning Research, 2004.

[8] S. Haykin, Adaptive Filter Theory, Prentice Hall, 2002.
[9] D. Nguyen and T. Ho, An efficient method for simpli-

fying support vector machines, ICML, 2005.
[10] F. Rosenblatt, The perceptron: A probabilistic model

for information storage and organization in the brain,
Psychological Review, 1958.

[11] G. Schohn and D. Cohn, Less is more: Active learning
with support vector machines, ICML, 2000.

[12] S. Tong and D. Koller, Support vector machine active
learning with applications to text classification, ICML,
2000.

[13] I. W. Tsang and J. T. Kwok and P.-M. Cheung, Core
vector machines: Fast SVM training on very large data
sets, Journal of Machine Learning Research, 2005.

[14] V. N. Vapnik, Statistical Learning Theory, John Wiley
Sons, Inc., 1998

[15] S. V. N. Vishwanathan and A. J. Smola and M.
N.Murty. SimpleSVM, ICML, 2003.

[16] J.S. Viter , Random sampling with a reservoir, ACM
transactions on mathematical software, 1985.

[17] H. Yu and J. Yang and J. Han, Classifying large data
sets using SVM with hierarchical clusters, SIGKDD,
2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

