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Abstract

In this paper a kernel-based online learning
algorithm, which has both constant space
and update time, is proposed. The approach
is based on the popular online Passive-
Aggressive (PA) algorithm. When used in
conjunction with kernel function, the num-
ber of support vectors in PA grows with-
out bounds when learning from noisy data
streams. This implies unlimited memory
and ever increasing model update and pre-
diction time. To address this issue, the pro-
posed budgeted PA algorithm maintains only
a fixed number of support vectors. By intro-
ducing an additional constraint to the origi-
nal PA optimization problem, a closed-form
solution was derived for the support vector
removal and model update. Using the hinge
loss we developed several budgeted PA algo-
rithms that can trade between accuracy and
update cost. We also developed the ramp
loss versions of both original and budgeted
PA and showed that the resulting algorithms
can be interpreted as the combination of ac-
tive learning and hinge loss PA. All proposed
algorithms were comprehensively tested on
7 benchmark data sets. The experiments
showed that they are superior to the existing
budgeted online algorithms. Even with mod-
est budgets, the budgeted PA achieved very
competitive accuracies to the non-budgeted
PA and kernel perceptron algorithms.
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1 INTRODUCTION

The introduction of Support Vector Machines (Cortes
and Vapnik, 1995) generated significant interest in ap-
plying the kernel methods for online learning. A large
number of online algorithms (e.g. perceptron (Rosen-
blatt, 1958) and PA (Crammer et al., 2006)) can be
easily kernelized. The online kernel algorithms have
been popular because they are simple, can learn non-
linear mappings, and could achieve state-of-the-art ac-
curacies. Perhaps surprisingly, online kernel classifiers
can place a heavy burden on computational resources.
The main reason is that the number of support vectors
that need to be stored as part of the prediction model
grows without limit as the algorithm progresses. In ad-
dition to the potential of exceeding the physical mem-
ory, this property also implies an unlimited growth in
model update and perdition time.

Budgeted online kernel classifiers have been proposed
to address the problem of unbounded growth in com-
putational cost through maintaining a limited num-
ber of support vectors during training. The origi-
nally proposed budgeted algorithm (Crammer et al.,
2004) achieves this by removing a support vector ev-
ery time the budget is exceeded. The algorithm has
constant space and prediction time. Support vector re-
moval is an underlying idea of several other budgeted
algorithms. These include removal of a randomly se-
lected support vector (Cesa-Bianchi and Gentile, 2007;
Vucetic et al. 2009), the oldest support vector (Dekel
et al., 2008), the support vector with the smallest co-
efficient (Cheng et al., 2007) and the support vector
resulting in the smallest error on the validation data
(Weston et al., 2005). Recently studied alternatives
to removal includes projecting an SV prior to its re-
moval (Orabona et al., 2008) and merging two SVs
into a new one (Wang and Vucetic, 2010). In practice,
the assigned budget depends on the specific applica-
tion requirements (e.g. memory limitations, process-
ing speed, data throughput).

In this paper, we propose a family of budgeted on-
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line classifiers based on the online Passive-Aggressive
algorithm (PA). PA (Crammer, et al., 2006) is a pop-
ular kernel-based online algorithm that has solid the-
oretical guarantees, is as fast as and more accurate
than kernel perceptrons. Upon receiving a new ex-
ample, PA updates the model such that it is sim-
ilar to the current one and has a low loss on the
new example. When equipped with kernel, PA suffers
from the same computational problems as other ker-
nelized online algorithms, which limits its applicabil-
ity to large-scale learning problems or in the memory-
constrained environments. In the proposed budgeted
PA algorithms, the model updating and budget main-
tenance are solved as a joint optimization problem. By
adding an additional constraint into the PA optimiza-
tion problem the algorithm becomes able to explic-
itly bound the number of support vectors by removing
one of them and by properly updating the rest. The
new optimization problem has a closed-from solution.
Under the same underlying algorithmic structure, we
develop several algorithms with different tradeoffs be-
tween accuracy and computational cost.

We also propose to replace the standard hinge loss with
the recently proposed ramp loss in the optimization
problem such that the resulting algorithms are more
robust to the noisy data. We use an iterative method,
ConCave Convex Procedure (CCCP) (Yuille and Ran-
garajan, 2002), to solve the resulting non-convex prob-
lem. We show that CCCP converges after a single it-
eration and results in a closed-from solution which is
identical to its hinge loss counterpart when it is cou-
pled with active learning.

We evaluated the proposed algorithms against the
state-of-the-art budgeted online algorithms on a large
number of benchmark data sets with different problem
complexity, dimensionality and noise levels.

2 PROBLEM SETTING AND
BACKGROUND

We consider online learning for binary classification,
where we are given a data stream D consisting of ex-
amples (x1,¥1), .., (Xn,Yn), where x € R is an M-
dimensional attribute vector and y € {41, —1} is the
associated binary label. PA is based on the linear pre-
diction model of the form f(x) = wlx, where w € RM
is the weight vector. PA first initializes the weight to
zero vector (wy = 0) and, after observing the ¢-th ex-
ample, the new weight w, is obtained by minimizing
the objective function Q(w) defined as!

Qw) = Jllw—will? + € H (wi(xeom) - (1)

'Here we study the PA-I version of PA.

where H (w; (x¢,y¢)) = max(0, 1—y,wT'x,) is the hinge
loss and C' is the user-specified non-negative parame-
ter. The intuitive goal of PA is to minimally change the
existing weight w; while making as accurate as possi-
ble prediction on the t-th example. Parameter C serves
to balance these two competing objectives. Minimiz-
ing Q(w) can be redefined as the following constrained
optimization problem,

argmin 3 ||w — wy|[2 4+ C - £
w
st 1—ywlix, <E&6>0,

(2)

where the hinge loss is replaced with slack variable &
and two inequality constraints.

The solution of (2) can be expressed in the closed-form
as

Wip1 = Wit QXe, Qg = Y min {07

It can be seen that w;i 1 is obtained by adding the
weighted new example only if the hinge loss of the
current predictor is positive. Following the terminol-
ogy of SVM, the examples with nonzero weights (i.e.
a # 0) are called the support vectors (SVs).

When using ®(x) instead of x in the prediction model,
where ® denotes a mapping from the original input
space RM to the feature space F, the PA predictor
becomes able to solve nonlinear problems. Instead
of directly computing and saving ®(x), which might
be infinitely dimensional, after introducing the Mercer
kernel function k such that k(x,x’) = ®(x)7®(x’), the
model weight at the moment of receiving the t-th ex-
ample, denoted as wy, can be represented by the linear
combination of SVs,

wi =Y a;®(xi), (4)

i€l

where I = {i|Vi < t,a; # 0} is the set of indices of
SVs. In this case, the resulting predictor, denoted as
f#(x) can be represented as

fi(x) = w?@(x) = Zatk(xt,x). (5)

el

While kernelization gives ability to solve nonlinear
classification problems, it also increases the compu-
tational burden, both in time and space. In order to
use the prediction model (4), all SVs and their weights
should be stored in memory. The unbounded growth
in the number of support vectors that is inevitable
on noisy data implies unlimited memory budget and
runtime. To solve this issue, we modify the PA al-
gorithm such that the number of support vectors is
strictly bounded by a predefined budget.
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3 BUDGETED PA (BPA)

Let us assume the current weight w; is composed of B
support vectors, where B is the predefined budget. If
the hinge loss on the newly received example (x¢, y;)
is positive, the budgeted PA (BPA) is attempting to
achieve accurate prediction on the new example and
produce new weight w1 that is 1) similar to wy, 2)
has a small loss on t-th example and 3) spanned by
only B of the available B + 1 (because of the addi-
tion of the new example) SVs. This approach implies
that one of the B +1 SVs can be removed. There are
two decisions that BPA has to make: 1) which SV to
remove and 2) what values should it assign to the re-
maining B SVs. We formalize the BPA problem and
derive its solution in the rest of this section. In the
following, we will replace input vectors x with feature
vectors ®(x) and will assume that wy is defined as in

(4).

The objective function of BPA is identical to that of
PA (1). By assuming that SV x,., r € I U {t}, has to
be removed, BPA adds the following constraint to (2),

W = Wy — Q{T@(Xr) + ZiES ﬁz(I)(Xl)? (6)

where S C I; U {t} — {r} is a subset of the remaining
SVs, after removal of SV x,.. The specific choice of §
is important from the BPA runtime perspective and
will be discussed in detail in Section 3.1. For now,
let us assume it has been specified by a user. The
additional constraint enforces budget maintenance. It
specifies that the new weight w updates the old weight
w; (first term in (6)) by deleting contribution of SV
X, (second term in (6)) and adding a new vector that
is a linear combination of SVs in set S (third term in
(6)), where (3,7 € S, are the optimization parameters.

Let us denote wy,; the solution of (2)+(6) when the
SV x,. is removed. The BPA update is completed by
finding w} ; for each r and selecting the one that re-
sults in the minimal value of the objective function,

r* = argmin Q(wi, ). (7)
rel,U{t}

The optimal new weight is obtained as w11 = W:;l
In the following proposition we give the closed-form
solution of the problem (2)+(6), assuming r is known.

Proposition 1. The solution of (2)+(6) is
Wi = Wi — a,®(x,) + Zies’ Bi®(xi), (8)
where
B = a'r'K_lkr + TytK_lkta
7 = min (C, max(0,

(K—1ke) ke
(9)

1—y: (ft(xt)farktquar(K*lkr)Tkt) )>

kij = k(xi,%x;), K= [ki;],i,j € S is the kernel matric
of SVsin S, k; = [ki;]T,j €S and 3= [3]",i € S.

Proof. We introduce the Lagrangian of the optimiza-
tion problem and derive the solution that satisfies the
KKT conditions. After replacing w with the right
hand side of (6), Lagaragian of (2)+(6) can be ex-
pressed as

L(ﬂ7£77—177—2)

=3l %@@(Xi) — o ®(x,)||2 + CE + 72(—¢)

+71(1 = ye(wi — o, (%) + E;gﬁiq)(xi))T(D(Xt) - &)
1€

= %5TK/6 - arﬁTkr + %a%krr + Cg

+71 (1= ye (fe(xe) — ok + 87ky) — €) — 7€,

(10)
where 71,75 > 0 are the Lagrange multipliers. The
optimal solution (8*,£&*) should satisfy the following
KKT conditions:

L
v,@*Lzog—g*:o
Ti
27[-; =0, ; =0if ¢;(3,",£) <0, i=1,2

where g1(6*,£*) = 1 — y(fe(xe) — o ke 4+ (%) k) —
&* corresponds to the first inequality constraint and
92(B*,€*) = —&* to the second inequality constraint
of (2). After combining each solution with one of the
four different cases in (11) and replacing 7 by 7 we
get the stated closed-form solution. O

It is worth to note that when H(w; (®(x¢),v:)) = 0,
Wiyr1 = W results in the minimal value 0 of the ob-
jective function Q(w), which is equivalent to simply
ignoring the ¢-th example. The runtime of (8) depends
on the size of the kernel matrix K of S. In the following
we present three BPA algorithms that have different
computational cost. The proposed algorithms share a
unified algorithmic structure which is summarized in
Algorithm 1.

3.1 THREE VERSIONS
3.1.1 BPA-Simple (BPA-S)

In the simplest case, we assume that S only includes
the new example ¢

S = {t}.

Therefore, only weight 3; of the new example is deter-
mined in (8), while the weights of all other SVs, except
the removed one, remain the same. This idea of com-
puting only f3; is consistent with the ”quasi-additive”
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Algorithm 1 Budgeted PA (BPA)

Input: Data stream D, kernel k, the regularization
parameter C, budget B
Initialize: w1 =0, I; =0
Output: w4
fort=1,2,... do
observe (X, yt);
if H(wy; (P(x¢),v:)) =0 then
Wit1 = Wi,
else if |I;| < B then
update w;11 as in (3); //replace x by ®(x)
It+1 = It @] {t},
else
for Vr € I; U {t} do
find wj_; by (8);
end for
find r* by (7);
Wip1 = Wiiy;
Iy =L U{t} —{r"};
end if
end for

updating style in the original memory-unbounded PA
algorithm. Because in (8) K is replaced with k¢ and
k, with k,; the optimal §; is simplified to

B = —“Igiﬂ + 7y, where 7 = min (C’, 7H(Wt}€(::“yt))) .
(12)

We name the resulting budgeted PA algorithm BPA-
S. Comparing Eq. (12) with the original PA updating
rule (3), it is interesting to see that 8; of BPA-S in-
cludes both the weighted coefficient of the removed
example and the quantity calculated by the original
PA update.

Cost The computation of each BPA-S update requires
one-time computation of 7 which costs O(B). Q(w}, ;)
from (5) can be calculated in constant O(1) time, so
the evaluation of (7) has O(B) cost. Therefore, the
total cost of BPA-S update is O(B). Since only B SVs
and their o parameters are saved, the space complexity
is also O(B).

3.1.2 BPA-Projecting (BPA-P)

A benefit of the BPA-S updating strategy is on the
computational side. On the other hand, weighting only
the newest example is suboptimal. The best solution

can be obtained if parameters 3 are calculated for all
available SVs,

SZIt+{t}—{T}

We call the resulting budgeted PA algorithm BPA-P.

Cost BPA-P calculation (8) is dominated by the need
to calculate K™! for every r. Using the rank-one up-
date (Cauwenberghs and Poggio, 2000), and observing
that kernel matrices K for two different choices of r
differ by only one row and column, K~! for one r can
be calculated using K~* for another r in O(B?) time.
Considering the need to apply (8) for every r, the total
runtime of BPA-P for a single update is O(B?). The
space scaling is O(B?).

3.1.3 BPA-Nearest-Neighbor (BPA-NN)

BPA-S gains in efficiency by calculating the coefficient
of only the newest example, while BPA-P trades the
efficiency with quality by updating the coefficients of
all SVs, excluding the removed one. Here, we propose
a middle-ground solution that approximates BPA-P
and is nearly as fast as BPA-S. Taking a look at the
calculation of § in (9) we can conclude that the r-th
SV which is being removed is projected to the SVs in-
dexed in S. In BPA-NN we define projection space
as the union of the newest example and the n nearest
neighbors? of the 7-th SV. Since the nearest neighbors
are most useful in projection, BPA-NN is a good ap-
proximation of the optimal BPA-P solution. In this
paper we use only the nearest neighbor, n = 1,

S={t}UNN(r)

where NN (r) is the index of the nearest neighbor of
x,. Accordingly, the model update is obtained by re-
placing K with

( ENN@), NNy KENN@) )
kNNt Ky

and k, with [k, nn(r) kr,t}T-

Cost At the first glance, finding the nearest neigh-
bor for r-th SV would take O(B) time. However, af-
ter using some bookkeeping by saving the indexes of
nearest neighbors and the corresponding distances for
each SV, the time complexity of finding k-NN could
be reduced to O(1). Thus, the computation of (8)
takes O(1) time. After deciding which example should
be removed, the bookkeeping information is updated
accordingly. Since, in average, each example is the
nearest neighbor of one example, the removal of one
SV costs the expected O(B) time to update the book-
keeping information. Therefore, the whole updating
procedure takes the expected O(B) time and requires
O(B) space.

4 FROM HINGE TO RAMP LOSS

There are two practical issues with hinge loss that are

relevant to the design of budgeted PA algorithms. The

2Calculated as Euclidean distance.
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first is scalability. With hinge loss, all misclassified
(yif(x;) < 0) and low-confidence correctly classified
(0 <y, f(x;) < 1) examples become part of the model.
As a consequence, the number of SVs increases with
the training size in the PA algorithm. This scalabil-
ity problem is particularly pronounced when there is
a strong overlap between classes in the feature space.
The second problem is that, with hinge loss, noisy and
outlying examples have large impact on the cost func-
tion (1). This can negatively impact accuracy of the
resulting PA predictor. To address these issues, in this
section we show how the ramp loss (Collobert, et al.,
2006)

0, yiwlx; > 1
R(w; (xe,p)) = 1 —yiwlx;, —-1<ywix; <1
2, yinxi < —1,

(13)
can be employed in the both standard and budgeted
versions of PA algorithm.

4.1 RAMP LOSS PA (PAF)

Replacing the hinge loss H with the ramp loss R in (1),
the ramp loss PA (PAF) optimization problem reads
as

1
n$n§|\w—wt|\2+C~R(W; (xt,yt)) (14)

Because of the ramp loss function, the above objective
function becomes non-convex. The following proposi-
tion will give us the solution of (14).

Proposition 2. The solution of the non-convex op-
timization problem (14) leads to the following update
rule

W = W; + ayX¢, where

o, = { min{C Ol b g | fy(an) < 1
otherwise.
(15)

Proof. To solve problem (14) we use Convex Proce-
dure (CCCP). CCCP (Yuille and Rangarajan, 2002)
is an iterative procedure that solves non-convex opti-
mization problem by solving a series of decomposed
convex approximations. In our case, (14) is decom-
posed into the convex part Jye,(w) and the concave
part Jeqpe (W) as follows

min L|lw — wy|[? + CR(w; (x¢,y¢))

1
= min o |lw — wi[[* + CH(w; (xi,5)) +

16
Jvex (W) ( )

C (R(W’ (Xtayt» - H(W’ (Xtayt») :

Jeave (W)

After initializing Wy, to wi, CCCP iteratively up-
dates Wy, by solving the following convex approxi-
mation problem

Wipmp = arg min (Jvez (W) + (Vwim, Jcave)TW)
argmin 3||w — wy|[? + CH(w; (x¢,y¢)),

= ifytftmp(x) Z -1
argmin 3||w — wy|[* 4+ C, otherwise.
w

(17)
The procedure stops if wy,, does not change.

Next we show that this procedure converges after a
single iteration. First, suppose y; fimp(x) > —1. Then
(17) is identical to problem (2). Thus, Wy, is updated
as (3) and in the next iteration we get

Yt femp(Xe) = ye (W + arxy)Txy
=y fo(xe) + yrou| %)) > —1,

which leads the procedure to arrive at the same Wi,
as in the previous iteration; thus the CCCP termi-
nates. Next, let us assume v fimp(x) < —1, in which
it is easy to see that the optimal solution is Wy, = W;.
Since Wiy, remains unchanged, the procedure con-
verges. According to the above analysis we conclude
that CCCP converges after the first iteration. Com-
bining with the fact that hinge loss equals zero when
yefi(x) > 1 we get the stated update rule. O

4.2 RAMP LOSS BUDGETED PA (BPAR)

By replacing the hinge loss with the ramp loss for the
budgeted algorithms in Section 3, we obtain the bud-
geted ramp loss PA (BPA®) algorithms. The resulting
optimization problem is similar to the hinge loss ver-
sion (as in the budgeted hinge loss PA case, here we
will replace x with ®(x)),

P(w) = min |lw — wi[[> + CR(w; (®(xt), y1))
st. w=wp — . ®(x,) + i Bi®(xi),

(18)
where r is assumed fixed, oy is initialized to zero and
{t} for BPA%-S
S=<(1L+{t}—{r} for BPAEP
{ttUNN(r) for BPAZ-NN.

Proposition 3. The solution of the non-convex opti-
mization problem (18) leads to the following updating
rule

w=w; — o, P(x;) + >, g BiP(x:), where
o Oé,-K_lkT- +TytK_1kt, lf |ft($t)| S 1
A _{ 0, otherwise,
(19)
and T is defined as in (9).
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Proof. The CCCP decomposition of the objective
function of (18) is identical to (16) and, accordingly,
the resulting procedure iteratively solves the approxi-
mation optimization problem (17) with one added con-
straint, namely,

Wimp = H‘lhi,n (Jvem (W) + (thmp Jcave)TW)
st.w=w; — . ®(x,) + 0,0 Bi®(x:).

Next we discuss the convergence of CCCP. First, sup-
pose Y fimp(x:) < —1. Then the optimal solution is
Wimp = Wi, SINCE Wy is unchanged and the pro-
cedure converges. Next, suppose Y fimp(x:) > —1.
Then the procedure solves the first case its hinge loss
counterpart problem (2)+(6) and Wy, is updated as
(8). Since the optimal solution decreases the objective
function and because H(wy; (P(x¢t),y:)) < 1, we get

3 Wimp — Wil[* + CH (Wimp; (B(x1), yr))
< $llwe — wy| |2 + CH (wy; (B(x¢),y¢)) < C,

which leads to H(Wymp; (P(x¢), %)) < 1 and thus
Yt femp(xt) > —1. Therefore, after finishing the first
iteration the procedure converges and we arrive at the
stated solution. O

4.3 RAMP LOSS BPA AS ACTIVE
LEARNING ALGORITHMS

The only difference between hinge loss PA and ramp
loss PA is that ramp loss updates the model only if the
new example is within the margin (i.e.|f:(x¢)] < 1).
This means that the decision to update the model
can be given before observing label of the new ex-
ample. Therefore, ramp loss PA can be interpreted
as the active learning algorithm, similar to what has
been already observed (Guillory et al., 2009; Wang and
Vucetic, 2009).

5 EXPERIMENTS

Datasets. The statistics (size, dimensionality and
percentage of majority class) of 7 data sets used in the
experiments are summarized in the first row of Table
1. The multi-class data sets were converted to two
class sets as in (Wang and Vucetic, 2010). For speech
phoneme data set Phoneme the first 18 classes were
separated from the remaining 23 classes. NChecker-
board is noisy version of Checkerboard, where class as-
signment was switched for 15% of the randomly se-
lected examples. We used the noise-free Checkerboard
as the test set. Attributes in all data sets were scaled
to mean 0 and standard deviation 1.

Algorithms. On the non-budgeted algorithms side,
we compared with PA (Crammer et al., 2006) and Ker-
nel Perceptron (Rosenblatt, 1958). For the Budgeted

algorithms, we compared with Stoptron (Orabona et
al.  2008), the baseline budgeted kernel perceptron
algorithm that stops updating the model when the
budget is exceeded; Random budgeted kernel percep-
tron (Cesa-Bianchi and Gentile 2007) that randomly
removes an SV to maintain the budget; Forgetron
(Dekel et al. 2008), the budgeted kernel perceptron
that removes the oldest SV to maintain the budget;
PA+Rand, the baseline budgeted PA algorithm that
removes an random SV when the budget is exceeded;
and Projectron++ (Orabona et al. 2008). For Projec-
tron++, the number of SVs depends on a pre-defined
model sparsity parameter. In our experiments, we set
this parameter such that the number of SVs is equal
to B at the end of training.

Hyperparameter tuning. RBF kernel, k(x,x’) =
exp(—||z—1'||2/20?), was used in all experiments. The
hyper-parameters C' and o2 were selected using cross
validation for all combinations of algorithm, data set
and budget.

Results on Benchmark Datasets. Experimental
results on 7 datasets with B = 100,200 are shown in
Table 1. Algorithms are grouped with respect to the
update runtime. Accuracy on the separate test set is
reported. FEach result is based on 10 repetitions on
randomly shuffled training data streams. The last col-
umn is the averaged accuracy of each algorithm on 7
data sets. For each combination of data set and bud-
get, two budgeted algorithms with the best accuracy
are in bold. The best accuracy of the non-budgeted
algorithms is also in bold.

Comparison of non-budgeted kernel perceptron and
PA from Table 1 shows that PA has significantly larger
accuracy than perceptron on all data sets. Compar-
ing the hinge loss and ramp loss non-budgeted PA, we
can see the average accuracy of PA is slightly bet-
ter than PA. In three of the noisiest datasets Adult,
Banana and NCheckerboard, PA® is more robust and
produces sparser predictors than PA. Moreover, it is
worth reminding that, unlike PA, PA® does not re-
quire labels of examples with confident predictions (i.e.
|f(x)| > 1), which might be an important advantage
in the active learning scenarios.

On the budgeted algorithm side, BPA®-P achieves the
best average accuracy for both B values. It is closely
followed by its hinge loss counterpart BPA-P. How-
ever, it should be emphasized that their update cost
and memory requirements can become unacceptable
when large budgets are used. In the category of the
fast O(B) algorithms, BPAf-NN and BPA-NN are the
most successful and are followed by BPA-S and BPA -
S. The accuracy of BPA-NN is consistently higher than
BPA-S on all data sets and is most often quite com-



Zhuang Wang, Slobodan Vucetic

Table 1: Results on 7 benchmark datasets

Time Algs Adult Banana  Checkerb  NCheckerb Cover Phoneme USPS Avg
21K x 123 4.3Kx2 10K x 2 10K x 2 10K x 54 10K x41 7.3K x 256
5% 55% 50% 50% 51% 50% 52%
Memory-unbounded online algorithms
Pcptrn 80.2+0.2  87.4+1.5 96.3+0.6 83.440.7 76.0+0.4 78.9+0.6 94.64+0.1  85.3
(#SV) (4.5K) (0.6K) (0.5K) (2.8K) (2.8K) (2.4K) (0.4K)
O(N) PA 83.6+0.2 89.1+0.7 97.2+0.1 95.8+1.0 81.6+0.2 82.640.9 96.7+0.1  89.5
(#SV) (15K) (2K) (2.6K) (5.9K) (9.9K) (7.2K) (4.5K)
PAT 84.1+0.1 89.3+0.7 97.5+0.1 96.2+0.8 82.7+0.3 83.7+0.7 96.7+0.1 90.0
(#SV) (4.4K) (1.5K) (2.6K) (3.3K) (9.8K) (6.5K) (4.5K)
Budgeted online algorithms (B=100)
Stptrn 76.5+£2.0  86.7+2.1 87.3+0.9 75.4+4.3 64.24+1.7 67.6+2.7 89.1+1.2 78.1
Rand 76.2+3.6  84.1+2.6 85.6+1.2 69.4+2.9 61.3+£3.2 65.0+4.4 87.1+0.9 75.5
Fogtrn 72.846.1  82.8+2.4  86.1+£1.0 68.2+3.5 60.8+2.7  65.6t1.2  86.2+2.1 74.6
o(B) PA+Rnd 78.4+1.9  84.94+2.1 83.3+1.4 75.1+3.6 63.1+1.5 64.04+3.9 86.2+1.1 76.4
BPA-S 82.440.1 89.4+1.3 90.0+0.8 87.4+0.7 68.6+1.9 67.443.0 89.6+1.3 82.1
BPA%-S 82.440.1 89.5+1.7 90.0+1.0 88.2+1.2 69.3+£1.8 67.04+3.2 89.3+1.2 82.2
BPA-NN 82.8404  89.6+1.4 94.0+1.2 90.2+1.3 69.1+1.8 74.3+0.7 90.840.9 844
BPA®-NN 83.1+0.0 89.8+1.1 94.2+0.9 92.3+0.5 70.34+0.8 74.640.8 90.8+0.6 85.0
O(B?) Pjtrn++ 80.1+0.1  89.5+1.1  95.4+0.7 88.1+0.7 68.7+1.0 74.6+0.7 89.24+0.7  83.7
0(B%) BPA-P 83.0+0.2 89.6+1.1 95.4+0.7 91.7+0.8 74.3+14 75.2+1.0 92.8+0.7 86.0
BPA-PF 84.040.0 89.6+0.8 95.2+0.8 94.140.9 75.0+1.0 74.9406 92.6+0.7 86.5
Budgeted online algorithms (B=200)
Stptrn 78.7£1.8  85.6+1.5 92.8+1.1 76.0£3.1 65.54+2.3 70.5+2.6 92.3+0.7  80.2
Rand 76.44+2.8  83.642.0 90.3+1.3 74.54+2.1 62.4+2.4 67.3+2.5 89.8 £1.1  T77.8
Fogtrn 72.9+6.8  85.0+1.3 90.941.7 72.244.4 62.142.8 68.0£2.3 90.3+0.9 77.3
o(B) PA+Rnd 80.1+2.4  86.7+1.9 87.0+1.3 78.3+1.8 64.2+2.7 68.74+4.3 88.8+0.8 79.1
BPA-S 82.7+0.2  89.5+0.7 93.440.5 89.7+0.9 71.7+1.7 71.3+£2.3 92.64+0.9 844
BPA%-S 83.1+0.1 89.5+0.9 93.9+0.6 90.8+0.8 T1.7+1.2 71.642.2 92.1+0.6 84.7
BPA-NN 83.1+0.4  89.6+1.1 95.540.4 91.7+1.3 72.7+1.0 75.841.0 92.840.6 85.9
BPAP-NN 83.3+04 89.5+1.4 95.2+0.5 93.3+0.6 72.7+1.4 T7.241.7 94.0+04 86.5
o(B?) Pjtrn++ 82.9+0.1  89.5+1.2  95.8+05 92.5+1.0 75.1+£2.0 75.2+0.6 93.240.6  86.3
0(B%) BPA-P 83.8+0.0 89.7+0.7 95.9+0.6 92.8+0.7 76.0+1.3 78.0+0.3 94.8+0.3 87.3
BPAR-P 84.6+0.0 90.3+1.5 95.641.2 94.5+1.1 76.3+1.0 T77.6+0.6 94.840.3 87.7

petitive to BPA-P. This clearly illustrates the success
of the nearest neighbor strategy. Interestingly, BPA -
NN is more accurate than the recently proposed Pro-
jectron++, despite its significantly lower cost. The
baseline budgeted PA algorithm PA+Rand is less suc-
cessful than any of the proposed BPA algorithms. The
performance of the perceptron-based budgeted algo-
rithms Stoptron, Random and Forgetron is not im-
pressive.

As the budget increases from 100 to 200, the accu-
racy of all budgeted algorithms is improved towards
the accuracy of non-budgeted algorithms. Covertype
and Phoneme are the most challenging data sets for
budgeted algorithms, because they represent highly
complex concepts and have a low level of noise. Con-
sidering that more than 98% and 72% of examples in
these two data sets become SVs in PA, the accuracy of
online budgeted algorithms with small budgets of B =
100 or 200 is impressive. It is clear that higher budget
would result in further improvements in accuracy of
the budgeted algorithms.

Detailed Results on 1 Million Examples. In this
experiment, we illustrate the superiority of the bud-
geted online algorithms over the non-budget ones on
a large-scale learning problem. A data set of 1 million
NCheckerboard examples was used. The non-budgeted
algorithms PA, PA® and four most successful bud-
geted algorithms from Table 1, BPA-NN, BPAR-NN,
BPA-P and BPAE-P were used in this experiment.
The hyper-parameter tuning was performed on a sub-
set of 10,000 examples. Considering the long runtime
of PA and PAR, they were early stopped when the
number of SVs exceeded 10,000. From Figure 2(a) we
can observe that PA has the fastest increase in train-
ing time. The training time of both non-budgeted al-
gorithms grows quadratically with the training size, as
expected. Unlike them, runtime of BPA®-NN indeed
scales linearly. BPA®-NN with B = 200 is about two
times slower than with B = 100, which confirms that
its runtime scales only linearly with B. Figures 2(b)
and 2(c) show the accuracy evolution curves. From
Figure 2 (b) we can see the accuracy curve of BPAT-P
steadily increased during the online process and even-
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Figure 1: Trained on 1 million examples

tually outperformed PA and PAf. In Figure 2(c),
BPAP-NN is quite competitive to BPAR-P and all al-
gorithms have the consistently growing accuracy. In
Figure 2 (d), the number of labels queried versus the
accuracy is plotted for four algorithms. It can be seen
that for the fixed number of queried labels the ramp
loss PA algorithms PAT and BPAZ-P achieved better
accuracy than the hinge-loss algorithms that require
labels for each example. Interestingly, BPAR-P was
slightly more successful than PA® at initial stage.

6 CONCLUSION

In this paper, we proposed a family of budgeted PA
algorithms. To maintain the budget, a joint optimiza-
tion problem is solved with respect to different updat-
ing strategies and loss functions. The resulting algo-
rithms share a unified update rule but have different
time and space costs. Experimental results show that
1) the proposed budget algorithms significantly im-
prove accuracy over the previously proposed budgeted
algorithms; 2) ramp loss based algorithms are more
robust to noisy data and can produce sparser mod-
els; 3) ramp loss PA can be directly interpreted as ac-
tive learning algorithm; and 4) the proposed budgeted
algorithms are applicable for large-scale learning. Fi-
nally, the idea of budgeted PA can be extended beyond
binary classification, but this is left for the future work.
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