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Abstract—The multiple instance regression (MIR) problem
arises when a data set is a collection of bags, where each bag
contains multiple instances sharing the identical real-valued label.
The goal is to train a regression model that can accurately predict
label of an unlabeled bag. Many remote sensing applications can
be studied within this setting. We propose a novel probabilistic
framework for MIR that represents bag labels with a mixture
model. It is based on an assumption that each bag contains a prime
instance which is responsible for the bag label. An expectation—
maximization algorithm is proposed to maximize the likelihood of
the mixture model. The mixture model MIR framework is quite
flexible, and several existing MIR algorithms can be described
as its special cases. The proposed algorithms were evaluated on
synthetic data and remote sensing data for aerosol retrieval and
crop yield prediction. The results show that the proposed MIR
algorithms achieve higher accuracy than the previous state of the
art.

Index Terms—Aerosol retrieval, expectation maximization,
Multi-angle Imaging SpectroRadiometer (MISR), mixture model,
Moderate Resolution Imaging Spectroradiometer (MODIS), mul-
tiple instance learning (MIL), multiple instance regression (MIR),
neural networks, remote sensing.

I. INTRODUCTION

N MULTIPLE instance learning (MIL), a learner is given a

number of labeled bags, each containing many instances of
the same type. The goal is to train a model that can accurately
predict label of an unseen bag given its instances. The main
difference from the traditional supervised learning is that labels
are assigned to bags instead of individual instances. The diffi-
culty of the MIL problem depends on the type and variability
of instances within each bag.

The most commonly addressed MIL problem is multiple
instance classification (MIC), where it is assumed that negative
bags contain exclusively negative instances, while positive bags
contain at least one positive instance [7]. Interestingly, such
a setup covers a substantial number of applications such as
drug activity prediction [7], image categorization [3], [19] and
retrieval [30], [32], text categorization [1], and stock market
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prediction [18]. A standard approach to solve MIC is to first
discover positive instances as those that are the most different
from instances in negative bags and to build a classifier that
best discriminates the positive instances from the negative ones.
Given an unlabeled bag, the classifier is applied over all its
instances, and if at least one of them is classified as positive,
the whole bag is labeled positive.

In the less commonly studied multiple instance regression
(MIR), bag labels are real valued. In the original contribution to
MIR [22], the assumption was that each bag contains a prime
instance that determines its label. A solution was proposed to
train a linear predictor for prime instances, but it was not speci-
fied how to detect the prime instance and how to use the predic-
tor on unlabeled bags. In [27], the prime instance assumption
was replaced with the assumption that bag instances have
different relevance and that bag label is a relevance-weighted
average of instance-level predictions. Since this assumption
results in an NP-hard problem, an approximation was proposed
that concurrently determines relevant instances and trains a
linear predictor. However, the paper did not describe how to
determine relevance of instances of an unlabeled bag and how
to predict its label. In [28], it was assumed that instances can
be grouped into a number of clusters and that only instances
from the “prime” cluster are responsible for bag labels. Upon
identifying the prime cluster, each bag is represented by a meta-
instance as an average of bag instances weighted by the strength
of their assignment to the prime cluster. The MIR problem is
then treated as a standard regression problem. This approach
provides a clear mechanism for labeling an unlabeled bag, but
there is an open question as to how appropriate the prime cluster
assumption is for any given application. In [29], a constructive
procedure was proposed that postulates that bag label should be
the mean or median of instance-level predictions. It assumes
that each bag contains high-noise instances whose removal
from training improves bag prediction accuracy. The proposed
algorithm starts from a training set that contains instances from
all bags. It incrementally removes the noisy instances from
training data as long as bag-level prediction accuracy continues
to increase.

MIR naturally arises in several types of remote sensing
applications. Let us consider the following two applications,
which have been previously studied within the MIR setup, as
representatives of remote sensing applications appropriate for
MIR. The first application is predicting aerosol optical depth
(AOD) from remotely sensed data [29]. An important property
of aerosol, which can aid AOD prediction, is that it has small
spatial variability over distances of up to 100 km [10]. On
the other hand, sensors aboard satellites gather information
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in the form of multispectral images with a high spatial res-
olution, where pixels could cover areas as small as 200 x
200 m?. In Fig. 2, we show the reflectances at a single spectral
band of the Multi-angle Imaging SpectroRadiometer (MISR)
instrument over a 50 x 50 km? area. Over this area, it is
reasonable to assume that AOD is nearly constant. The main
reason for the observed reflectance variability is the variability
of surface properties within the area. Since the remotely sensed
information is a mixture of surface and atmospheric effects, the
surface can be considered as a source of observation noise. With
respect to the aerosol retrieval, pixels over darker surfaces can
be considered to be of higher quality, while pixels over brighter
surfaces are of lower quality. If we treat a multispectral satellite
image over an area as a bag, the AOD value measured by a
highly accurate ground-based instrument (e.g., by an aerosol
robotic network (AERONET) [9] radiometer) as its label, and
a single pixel as an instance, then, training an AOD predictor
from a set of labeled images is a form of MIR. It should be
noted that each pixel is a noisy version of the prime instance,
which would be a pixel over the perfectly dark surface.

Aerosol retrieval has several features that make it suitable
for MIR: multispectral images labeled by ground-based mea-
surements, pixels with varying levels of noise, label with low
spatial variability. This property is shared by the related ap-
plications, such as retrieval of greenhouse gases (water vapor
[26], carbon monoxide [8], methane, nitrous oxide, ozone [2]).
Beyond retrieval of atmospheric properties, the MIR setup can
be appropriate for mapping of land surface temperature [4],
soil moisture [11], precipitation [12], ocean salinity [15], and
ocean [25] and land [31] biological productivity, which are
also characterized by spatially high-variable pixels and low-
variable label. MIR can also be useful for applications where
remotely sensed observations are proxies for prediction, such as
in numerous studies in environmental monitoring [16], ecology
[14], and epidemiology [13].

Another remote sensing application that was previously stud-
ied as an MIR problem is the prediction of county-level crop
yields [27]. For illustration, in Fig. 4(a) we show corn yield in
each county of Kansas in 2002, while in Fig. 4(b), we show the
reflectance at a single spectral band of a Moderate Resolution
Imaging Spectroradiometer (MODIS) instrument observed a
few months before the harvest. As can be seen, each county has
a single label value [corn yield reported by the U.S. Department
of Agriculture (USDA)] and contains multiple pixels with
varying reflectance. By considering each county as a bag, its
crop yield as the bag label, and pixels as instances, this clearly
leads to the MIR setting. In the absence of knowledge about the
location of crop fields, it becomes reasonable to calculate a bag
label as a weighted average of individual instance predictions. It
should be noted that, in addition to the pixels over crop fields,
some noncrop pixels (e.g., forests) can also contain valuable
information (e.g., leaf area index) for the prediction, while
others (e.g., cities, lakes, clouds) can be uninformative. Unlike
the aerosol retrieval application, where label is a spatially low-
variable property, the bag label in the crop prediction appli-
cation is an aggregated value over a region. Similar setups
could occur in other socioeconomic applications of remote
sensing.
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In this paper, we propose a probabilistic framework for
analyzing MIR problems and designing MIR algorithms. Our
framework is based on the prime instance assumption that a
bag label is determined by its prime instance. Under this as-
sumption, we treat the bag label as a random variable described
with a mixture model, where the contribution of each instance
to labeling is proportional to its probability of being the prime
instance. To learn the mixture model, we use the expectation-
maximization (EM) algorithm. Given the mixture model, the
prediction for an unlabeled bag can be obtained as the weighted
average of the instance-level predictions. Within the proposed
framework, users have flexibility in modeling the probability
that an instance is the prime instance. We study several possible
strategies appropriate for remote sensing problems. Moreover,
previous MIR algorithms prime-MIR [22], pruning-MIR [29],
and a baseline algorithm called instance-MIR can be described
as special cases of the proposed framework.

The paper is organized as follows. Section II defines the MIR
problem; Section III outlines several previously proposed MIR
algorithms; Section IV proposes a mixture model framework
for the MIR problem; Section V describes the EM MIR algo-
rithm and how the previous MIR algorithms fit this framework;
Sections VI and VII compare previous and proposed MIR
algorithms on both synthetic and remote sensing data.

II. MIR PROBLEM SETTING

In the MIR problem, we are given a set of B labeled
bags, D = {(bag;,v;),i = 1... B}, where bag; = {x;;,j =
1...0:}, X;; 18 an attribute vector of the jth instance from the
ith bag, y; is the real-valued label of the ith bag, and b; is the
number of instances in the ith bag. The objective is to train a
regression model §j(bag) that accurately predicts the label of an
unlabeled bag. Accuracy of MIR is defined as the mean squared
error (MSE) of bag label predictions

LB
MSEpqq = B Z (v — 9(bag;))”. (D
i=1

We assume that the prime instance is responsible for each
bag label: label y; of the ¢th bag is a function of the prime
instance p; plus some added noise

yi = h(p:) +¢ ()

where h is the unknown regression function, and ¢ is the label
noise. If the noise is Gaussian, e ~ N (0, 02), the probability of
bag label y; given p; can be written as

p(yilpi) =N (yi|h(p:), 0°)
e <_<y—h<p>>> o

(2mo2)1/2 202

In this paper, we will assume that bag instances are noisy or
distorted versions of p;
Xij = Pi + 0ij “)

where §;; is a deviation of attributes in the jth instance of the
ith bag from the prime instance.
To help the reader, our notation is summarized in Table I.
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TABLE 1
SUMMARY OF NOTATION

Notations Description

D data set

bag; i-th bag

X J-th instance in bag;

X set of x;;

Vi label of bag;

Y set of y;

b; # instances in bag;

B #bagsin D

hf functions

b MIR predictor

7] model parameters

pi the prime instance in bag;

zjj binary indicator for the prime instance
Z; [zil.j=1,....b;

Z set of z;

T prior probability that x;;is prime

Yy posterior probability that x;; is prime

III. PREVIOUSLY PROPOSED MIR ALGORITHMS

Let us first introduce the benchmark MIR algorithms that we
will use to compare with the proposed algorithms. The first two
algorithms have been used previously [28], [29] as baselines,
while the remaining three are some of the most prominent
recently proposed MIR algorithms.

A. Aggregated-MIR

In this algorithm, the ith bag is treated as a meta-instance
(xi,y;) obtained by averaging all its instances, as

x; = mean ({x;;,7 =1...0;}). 3)

Then, a regression model f is trained using a set of meta-
instances D4 = {(x;,v:),j = 1... B}. To predict label of an
unlabeled bag, the bag is represented as the meta-instance and
used as an input to the predictor

g(bag;) = f(x:). (©)

If E[6;;]=0 in (4) and b; is large, aggregated-MIR is
appropriate, because averaging creates meta-instances that ap-
proach prime instances as the bag size increases. If E'[0;;] # 0,
aggregated-MIR produces suboptimal results.

B. Instance-MIR

An alternative to treating each bag as a single example is to
treat each instance as an example. A straightforward application
of the instance-as-an-example approach is to represent the jth
instance from the ith bag as (x;j,¥;), join instances from
all bags into a single training data set Dy = {(x;;,v;),% =

1...B,j=1...b}, and learn a regression model f from the
training data. To prevent giving higher importance to large bags,
instance-MIR samples (with repetition) the same number b of
instances from each bag to the training data set. In the absence
of a principled way to predict bag label, instance-MIR uses
an intuitively reasonable approach: the label of the ith bag is
calculated as

y(bag;) = mean ({f(xi;),j =1...b}). (7)

In case when bags contain outlying instances, it can be more
appropriate to use the median predictor

y(bag;) = median ({f(x;;),j =1...b}). (3)

If the distribution of d;; in (4) is unknown, instance-MIR
can be treated as learning with noisy attributes. A recent study
[21] showed that, despite the simplicity, the instance-based al-
gorithms such as instance-MIR can provide competitive results
on many data sets.

C. Cluster-MIR

Aggregated-MIR and instance-MIR treat all instances
equally. Motivated by the crop prediction problem, where in-
stances might have different relevance for the prediction, the
assumption made in [28] is that the instances in each bag are
drawn from a number of distinct underlying data distributions
and that only one distribution is responsible for bag label. The
distinct distributions are identified using soft clustering with
k components. Then, for the ith bag, k meta-instances x;;,
j = 1...k, are created by weighted averaging of bag instances,
according to their assignment to each of the &£ components.
By concatenating all meta-instances for the jth component, a
training data set D; = {(x;;,%;),%4 = 1... B} is constructed,
and predictor f; is trained. Among the £ predictors, the one
with the highest accuracy is selected to provide predictions
on unlabeled bags, by weighted averaging of its instance-level
predictions. It should be noted that for k = 1, cluster-MIR
reduces to aggregate-MIR.

Cluster-MIR is flexible, as the user has a choice in selecting
clustering algorithm, distance metric, number of clusters, and
prediction algorithm. The potential drawback is that clustering
is performed in an unsupervised manner, without consulting the
bag labels. This can result in uninformative clusters and sub-
par prediction accuracy, even when the underlying assumption
is true.

D. Prime-MIR

Prime-MIR [22] is based on the assumption that each bag
contains the prime instance. It is the instance-as-an-example
approach where only a single instance from each bag is used
in training. Prime-MIR is an iterative algorithm that attempts
to discover the prime instances and train a linear predictor on
them. Given the currently available predictor, the algorithm first
selects from each bag the instance which has the lowest pre-
diction error. These instances are called the prime candidates.
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Then, a new predictor is trained using the prime candidates.
The algorithm iterates as long as the prediction error over prime
candidates decreases.

In our previous work [29], we made several slight modifi-
cations to the originally proposed algorithm to make it more
generally applicable: 1) While the original algorithm starts
from a randomly generated predictor, we used instance-MIR
algorithm to build the initial predictor. 2) We allowed use
of both linear and nonlinear (i.e., neural networks) regression
models. 3) The original algorithm does not propose how to use
the resulting predictor on an unseen bag. We used the mean and
median averaging from (7) and (8).

E. Pruning-MIR

Instance-MIR and prime-MIR are two extremes of the
instance-as-an-example approach. Instance-MIR uses all avail-
able instances and suffers when bags contain many noisy in-
stances. Prime-MIR uses a rather sensitive procedure that does
not guarantee detection of the prime instance. Moreover, it uses
only a small fraction of instances for training, which could
prevent accurate training of more complex models.

To address these issues, pruning-MIR was proposed in our
previous work [29]. It starts from the instance-MIR solution,
and in each iteration discards a small fraction of the noisiest
instances in each bag, and then trains a new predictor on the
remaining instances. By reducing noise, the algorithm is trying
to improve quality of training data and increase accuracy. The
algorithm runs as long as there is an improvement in prediction
accuracy.

The noisiest instances in a bag are defined as those whose
predictions are the farthest away from the median prediction
over the nonpruned instances. With such definition of noisy
examples, pruning-MIR criterion ensures that the algorithm is
less sensitive to the choice of the initial predictor. To predict
label of an unlabeled bag, either (7) or (8) is used.

F. MIR Algorithms Not Considered in Evaluation

There are two more prominent MIR algorithms that we did
not consider in the evaluation. The first is the algorithm already
mentioned in the introduction that is attempting to determine
relevance of instances in training bags [27]. This algorithm
was not considered because it does not have a mechanism to
determine relevance of instances in unlabeled bags and provide
predictions. The second is the algorithm proposed in [5]. It is
similar to the prime-MIR, with the main difference being that
the prime instance is the one with the highest prediction. It
should be noted that this prime instance assumption is similar to
the assumption used in many of the MIC algorithms mentioned
in the introduction. However, this assumption is not appropriate
for remote sensing applications. Let us take the aerosol retrieval
as an example: the instance with the highest prediction is likely
to be the pixel over the brightest surface within the region, and
thus the noisiest instance in the bag. In addition to this issue,
the algorithm from [5] can only train a linear predictor, and its
generalization to nonlinear regression is not trivial.
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IV. MIXTURE MODEL FOR MULTIPLE
INSTANCE REGRESSION

The proposed framework is based on the prime instance as-
sumption that one of the b; instances in bag; is responsible for
the bag label y;. Let us define the b;-dimensional binary random
variable z; = [2;1 ... 2, ], such that z;; = 1 if the jth instance
in the ith bag is prime and z;; = 0, otherwise. Therefore, only
one element of z; is nonzero, and E?;l zij =1 If 25 =1,
the conditional probability p(y;|bag;, z;) is fully determined
by instance x;;

p(yibag;, zi) = p(yilxi;)- ©)
Let us express p(y;|bag;) as the marginal of the joint distri-

bution p(y;, z;|bag;). Using the sum and product rules, we can
write

)= p(yi,zi|bag,)

Zi

p(yi|bag;

— 3" p(zilbag)p(yi|zi, bag,).  (10)

Z;

By observing that there are b; possible values of z;, and using
(9), we obtain the following mixture model

b;

> p(zi; = 1|bag;)p(yilxi;)

j=1

b;
Zﬂ'sz y7|x1j

p(yi|bag;) =

(11)

where we defined 7;; = p(z;; = 1|bag;) for simplicity of no-
tation. Thus, 7;; is the prior probability that the jth instance
is the prime instance of the ith bag, and p(y;|x;;) is the label
probability when the jth instance is the prime instance. Given
the mixture model (11), the label of the ith bag can be predicted
as its expected value

y(bag;) = E[y;|bag;] = (12)

Zﬂ—zg yz|ng

Therefore, the prediction of a bag label is straightforward and
follows directly from the defined mixture model. This differs
from other MIR approaches that either do not have a mechanism
for label prediction or use heuristics.

The learning problem is to determine 7;; and p(y;|x;;)
from training data. We assume that both probabilities are
parametric functions and express them explicitly as m;;(0,)
and p(yi|xi;,0),). The mixture model from (11) can now be
rewritten as

Zm]

p(yi|bag;,0) p(yilxij, 0p) (13)

where 6 = (0, 0,,) are the model parameters.
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A convenient way to optimize parameters of a mixture model
is to use the EM algorithm [6]. Let us denote X = (bag;,: =
1...B),Y=(y;,i=1...B),and Z = (z;,i = 1...B), and
observe that we can write

b;

P> zi|bag;, 8) = [ [ (7i;(04)p(vilxi5,0,))7 .
j=1

(14)

Then, the log-likelihood of the complete data, D ompiete =
{(bag;,vyi,2;),i = 1... B}, can be expressed as

B
Inp(Y,Z[X,0) =In | [ p(vi, z:|bag;, 6)

. =1
= Z Z Zij ln (71'2‘]’ (9g>p(yi|xija 0;0)) .

5)

EM starts with an initial guess of 8 and then updates it by
alternating between an expectation (E) step and a maximiza-
tion (M) step until convergence. In the E-step, the algorithm
evaluates the expected value of the log-likelihood (15), with
respect to the current estimate of the posterior probability of Z,
given X, Y and 6. By denoting the current parameter estimate
as 0°!4, the expectation can be expressed as

Q(6,0°") =Egx y gora [Inp(Y,ZX, 0)]

B b;
= ZZP(%J = 1|bagi7yiveold)

i=1 j=1

x In (m35(0,4)p(yilxiz, 0p)) - (16)

The posterior probability that the jth instance in the ith bag
is the prime instance can be calculated as

p(ZZJ = 1|bagi7 Yis OOld)
p(zi; = 1,yi|bag;, 0°'%)
p(yi|bag;, 6°%)

@

b;
kgl Tik (led) p (vilxir, Of,ld)

After defining for simplicity of notation ;; (gold) = p(zi; =
1|bag;, y:, 8°'%), we can express Q(8,0°%) as

Q(0,0°%) = Z Z 7i;(8°4) In;;(8,)

B b;
+ 303 4507 Inplyilxi;,0,). (18)

i=1 j=1

In the M-step, the algorithm updates the model parameters 6
to maximize @,

0" = argmax @) (0, 0°ld) . (19)
0

The resulting EM procedure is summarized in Table II.

TABLE II
EM ALGORITHM FOR MIXTURE MODEL MIR

Input: D
Output: f
Initialize: 67
Repeat
E-step: construct (6,0

M-step: 0™" = arg max, O(6, 0”)
eold — Q"

old )

Until convergence

To optimize (19), we have to define the parametric functions
m;5(04) and p(y;|x;;, 0,). This will be discussed in the follow-
ing section.

V. TRAINING ALGORITHMS

In this section, we discuss how to solve the MIR optimization
problem (19), depending on how ;;(0,) and p(y;|x;;,0,) are
defined.

A. Label Probability

Consistent with the assumption (3), we define p(y;|x;;,
0,) = N(y|f(xij, w),?), where 6, = (w,d), and f(x,w)
is a regression function with parameters w. Then, the
In p(yi|xi;, 0p) term from (18) becomes

(yi — f(Xij,W))Q

In p(yi|xij,0,) = 5 + In 2762,

(20)

B. Prime Prior as a Deterministic Function

In some remote sensing applications, there might be a clear
physical interpretation of the prime instance, and it can be
reasonable to set the values of m;; based purely on domain
knowledge. In this case, m;;(0,) = m;;, and there is no need
for the algorithm to learn the parameters 6,. The only condi-
tion in designing the priors is that Zj m; = 1 and m;; > 0,
to ensure that priors can be treated as probabilities. For ex-
ample, pixels from heavily urban areas are not expected to
be correlated with crop yield. Similarly, cloudy pixels and
pixels over bright surfaces are considered very noisy from the
perspective of aerosol prediction. In both cases, we can set
their priors to zero and the priors of the remaining pixels to a
constant value.

As a consequence, the first term in (18) can be treated as a
constant during the EM procedure and (19) can be simplified to

0" = argmin Z Z i (6°'9)
0

i=1 j=1

2
y ( (i — f(xi5,W)) +1n2m52> o

62

where 0 = 6,, = (w,0).



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

TABLE III
NEURAL NETWORK TRAINING PROCEDURE FOR OPTIMIZING f

The cost function:

Es = Z Zvl,w”’d)(yl S W)
i=1 j=1
Weight update rule:
W< W—1-0E,/0OW , where

B b
== 222 070 = S (kW)
W i=1 j=1

f(X,,,W)

To optimize w in (21), we can treat § as constant. The
resulting problem is equivalent to minimizing the weighted
squared error of f at the instance level

B b;
Ep =Y 7 (07%) (i —

i=1 j=1

f(xi5, w))2 . (22)

Let us consider the setup where f is a feedforward neural
network with weights w. We use neural networks because they
are powerful and easy to train. The basic method for neural
network training is gradient descent, where weights w are
updated in the negative direction of the gradient of the cost
function as w <— w —n- 0E;/Ow, where 7 is the learning
rate. Table III gives the details of calculation of the gradient
OFE/0w. We note that the gradient contains partial derivatives
0f(xi;,w)/Ow, which can be calculated efficiently using the
backpropagation procedure.

Given the neural network, the remaining step is to optimize
0. By setting the derivative of (21) with respect to ¢ to zero, the
optimal ¢ is obtained in a closed form as

bi

B
3 2 7 (6°) (9 — S iy w))?
2 _ i=lj=
" LA old (23)
£ 50 0%
We call the resulting EM algorithm EMP — MIR, where D

stands for deterministic prior.

C. Prime Prior as a Function of Prediction Deviation

The deterministic prior introduced in Section V-B allows for
consulting the existing prediction models. Given this possibil-
ity, as a special case of the deterministic prior, we define

1
=N (f (i, w') i, v7) (24)

s ij — CZ
where C}; is the normalization constant that ensures that all
priors in the bag sum to 1 (i.e., Zj m; = 1). Parameter u;
is defined as the median of all predictions in bag,, u; =
median({f(x;;,w°9)}) and v; as the multiple of median
absolute deviation (MAD)

v;=1.48-MAD = 1.48 -median ({|f(x;;, w'?)— | }). (25)
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TABLE 1V
EM ALGORITHM FOR MIXTURE MODEL MIR

The cost function:

E, — 33 (,(6")n,@,):

i=1 j=I

Weight update rule:
0, <0, —7]~6E /00,4 , where
6‘E Y Og(x ,0 )
gz—zzwu 6" =my O )—
g i=l j=1 H

MAD is a robust measure of the variability of a univariate
sample. The introduced prior (24) is related to the idea used in
pruning-MIR from Section III-D. It gives high probability to
instances whose prediction is close to the median prediction.

We call the resulting EM algorithm EMPP — MIR, where PD
stands for predictive deviation.

D. Prime Prior as a Parametric Function

In this strategy, the prime prior is defined as a parametric
function 7;;(0,). To ensure that Z?;l mi; =1, my; >0, we
define 7;;(6,) as the soft-max function

exp (9(Xij, Wy))
lexp (9(xis Wg))

mij(0g) = (26)

=

k

where g is a parametric function. Specifically, we will assume
that g is a feedforward neural network with weights w. Thus,
0, = wg, and the parameters of the mixture model from (11)
are 0 = (w,d, wy).

We should observe that weights w, influence (19) only
through its first term, while weights w and scalar § influence
(19) only through its second term. Therefore, the M-step re-
duces to separate optimization problems. The optimization of
w and § was explained in Section V-B. In the following, we
discuss learning of w,. After plugging (26) into the first term
of (19), the optimization problem reduces to the minimization
of the cross entropy between the prime prior and posterior
probabilities. This implies that g is optimized such that the
prime prior approximates the prime posterior. The procedure
for training of neural network g is summarized in Table I'V.

We call the resulting EM algorithm EM® — MIR, where
superscript G is a reminder that the prior is parameterized.

E. MIR Predictor

Following (11), and given the learned parameters 6 =
(w, 0, wy), the label of the ith bag is predicted as

Z i (6

y(bag;) [ (x5, W) (27)

where m;; can be a predetermined deterministic function, or
calculated using (24) or (26).
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F. Reductions to Other Approaches

Three previously proposed algorithms, prime-MIR [22],
pruning-MIR [29], and instance-MIR, can be interpreted as the
special cases of the proposed mixture model MIR framework.

Special case 1 (prime-MIR): Let us assume that 7;; = 1 /bi
for all instances in bag, and that the § parameter in (20)
is predetermined and very small. By denoting prime(i) as
the index of the instance predicted with the smallest error, it
follows that p(yi|X; prime(i)» Op) > p(yilXik, Op), for all k #
prime(i). From there, it follows that ¥; yime(i) = 1 and i =~
0 for all k& # prime(i). In this case, the cost function (22) can
be approximated with

B

Ef = Z (yl - f (Xi,prime(i)a W))2

i=1

(28)

Note that the instance with index prime(i) is exactly the
prime candidate introduced in the prime-MIR algorithm. Learn-
ing the weight w consists of repeatedly minimizing (28) and
recalculating the prime candidates, which is equivalent to the
prime-MIR algorithm. Prediction of the bag label using (27) is
simply the average of all predictions in a bag, and it is consis-
tent with the prime-MIR prediction heuristic (7) explained in
Section III-C.

Special case 2 (pruning-MIR): Let us assume that the
parameter in (20) is predetermined and very large, and de-
fine m;; = 0 for the noisiest bag instances and 7;; = const
for the remaining ones. Following pruning-MIR described in
Section III-D, the noisiest instances are those whose prediction
is the farthest from the median prediction in the bag. It is worth
pointing out here that the prior defined in (24) and (26) is
consistent with this description and can be treated as a particular
way of defining the noisiest instances.

Since 0 is very large, the p(y;|x;;,6,) values of all bag
instances are very similar and 7;; ~ m;;. In this case, the cost
function (22) can be approximated with

Ep=3% % i~ f(xijw)’

i=1 j,m;;70

(29)

and the resulting procedure consists of minimizing (29) and
removing the noisiest instances from each bag. This is exactly
the procedure followed by pruning-MIR. Following (27), the
bag label is the average prediction over the low-noise instances,
which is a slight departure from the original pruning-MIR
mean/median predictor.

Special case 3 (instance-MIR): Let us assume that the
parameter in (20) is predetermined and very large and define
mi; = 1/b;. Since 0 is very large, the p(y;|x;;, 8p) values of all
bag instances are very similar and v;; =~ m;;. In this case, the
cost function (22) can be approximated with

(30)

and the resulting procedure consists of minimizing (30). It
is interesting to observe that, in this case, the EM procedure

terminates after a single iteration. This resulting algorithm is
exactly the baseline instance-MIR algorithm. Following (27),
the bag label is predicted as the average over the bag instances.

Discussion of special cases. The interpretation of prime-
MIR and pruning-MIR within the proposed framework re-
veals that they require very restrictive assumptions about the
0 parameter—it is fixed as either a very large or a very small
number. These models also use deterministic prime priors,
which further reduces their representation power. Therefore, the
proposed EM framework for MIR is a significant extension of
these two previously proposed approaches. As for the instance-
MIR, although it can be described as a special case of the EM
framework, its appeal lies in its simplicity and its usefulness for
benchmarking. Finally, it should be observed that aggregate-
MIR and cluster-MIR cannot be described within the proposed
framework.

VI. EXPERIMENTS ON SYNTHETIC DATA

In this section, we present evaluation of the proposed al-
gorithms on several synthetic data sets. We also evaluated
baseline methods, instance-MIR and aggregated-MIR, and the
previously proposed methods, cluster-MIR, prime-MIR [22],
and pruning-MIR [29], which are all described in Section III.
We used the root MSE (RMSE) of bag label predictions defined
in (1) to assess the performance.

A. Synthetic Data Sets

We constructed synthetic data sets following the data gen-
erating process described in (2) and (4). To facilitate the in-
terpretation of the results, we used 1-D attribute vectors and
regression function h(x) for generating bag labels. We studied
linear regression, h(x) = x, and nonlinear regression, h(z) =
22, The synthetic data sets differed in the way we generated
label noise €; in (2) and attribute noise d;; in (4).

MIR-Gaussian (B, b, 0, s). For each bag, bag,,i =1... B,
we generated the prime instance as a random number between
0 and 1. The bag label y; was generated by adding the Gaussian
noise ¢; with mean 0 and variance 0. Then, we generated b(=
5,100) instances for each bag as noisy versions of the prime
instance using (4), where 0;; was Gaussian noise with mean
zero and variance sZ. MIR-Gaussian generator is idealistic,
and all MIR algorithms described before should achieve good
accuracy.

MIR-Outlierl (B, b, 0, s). Real-life remote sensing data are
likely to introduce more complex attribute and target noise than
the Gaussian noise used in MIR-Gaussian generator. For exam-
ple, in aerosol prediction problem, bags over highly variable
terrain will contain a large fraction of outlying instances, while
bags over bright terrain will have instances with biased noise
distribution.

To simulate these properties, MIR-Outlier] generates
bags with different fractions of outliers. Specifically, ¢;% of
instances in the ¢th bag are generated using MIR-Gaussian
generator, where ¢; is a random number between 50 and 100,
and the remaining instances are generated as outliers. The
attribute in the jth outlier instance of the ith bag is generated
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as x;; = p; + 0;; + v;, where 6;; is the Gaussian noise with
variance 2552, and v is an offset generated as a random number
between —0.25 and 0.25.

MIR-Outlier2 (B, b, 0, s). In addition to outlying instances
generated by MIR-Outlierl, real-life data are characterized by
outlying target values. Starting from MIR-Outlierl generator,
MIR-Outlier2 generates outlying targets in 20% of the ran-
domly selected bags as y; = h(p;) + ¢, where ¢; is Gaussian
additive noise with mean zero and variance 2502

B. Experimental Design

Feedforward neural networks with one hidden layer and five
hidden nodes were used as the regression model f. For the
prime prior function g in EM® — MIR, we used feedforward
neural networks with one input and one hidden node. The re-
silient backpropagation algorithm [24] was iterated 200 epochs
for training of f and 50 epochs for g. For pruning-MIR, five it-
erations of instance removal were used, as in [29]. For instance-
MIR, prime-MIR, and pruning-MIR, the median predictor (8)
was used in testing. The proposed EM-MIR algorithms were
iterated until convergence (the increase of the objective (18)
is less than 0.1). For cluster-MIR,' we experimented with
different numbers of clusters, &k = {5, 15, 30} but only reported
the result with the lowest RMSE. We also evaluated the case
when both attribute x and the prediction deviation are used as
inputs to ¢, and we denote this algorithm EM%? — MIR.

C. Results

The summary of experimental results on the synthetic data
for h(x) = x and b = 100 is shown in Table V(a), for h(x) =
22 and b = 100 in Table V(b), and for h(x) = 22 and b = 5 in
Table V(c). RMSE are calculated on the test data. Each result is
an average of ten runs of the algorithm. Values in bold indicate
the best results for each data set.

For MIR-Gaussian (100, b, 0.05, 0.1), all employed MIR
methods achieved similar accuracies, as expected by the design
of the data set. However, the proposed EM-MIR algorithms
were slightly more accurate than the alternatives on the non-
linear regression data. The success of aggregated-MIR on lin-
ear regression data can be attributed to the fact that instance
attribute was created by adding Gaussian noise with mean zero
to the prime instance (as discussed in Section III-A).

For MIR-Outlierl (100, b, 0.05, 0.1), the performance of
instance-MIR is markedly inferior to other algorithms due to
a large level of attribute noise and the known effect of regres-
sion function attenuation when learning on data with noisy
attributes. EMPP — MIR and EM“2? — MIR were the most
successful approaches reflecting their robustness to the outlying
instances. EMS2 — MIR was more accurate than EM© — MIR,
which shows the importance of prediction deviation for dis-
criminating noisy instances in this data set. Similar results were
also observed on MIR-Outlier2 (100, b, 0.05, 0.1) data set, but

'We used feedforward neural networks (with the same architecture as in the
other algorithms) as the prediction algorithm to replace with support vector
regression (SVR) (the one used in [36]) because we observed neural networks
achieved lower RMSE than SVR on our data sets.
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TABLE V
(a) RMSE(x100) ON THREE SYNTHETIC DATA SETS, BAG SIZE = 100,
H(xz) = x. (b) RMSE(x100) ON THREE SYNTHETIC DATA SETS,
BAG SIZE = 100, H(z) = x2. (c) RMSE(x 100) ON THREE
SYNTHETIC DATA SETS, BAG SIZE = 5, H(z) = x2

(a)

Algorithms . Datasets .
MIR-Gaussian MIR-Outlier] MIR-Outlier2
Aggregated 5.040.0 7.040.0 7.340.0
Instance 6.5+0.0 14.4+0.0 14.6+0.0
Prime 6.3+0.5 14.141.9 11.4+0.2
Pruning 5.1+0.0 5.310.0 6.4+0.0
Cluster 71402 6.540.1 7.940.5
EM™ 5.440.0 5.40.0 6.310.0
EM¢ 5.940.0 7.240.1 7.840.5
EM® 5.7+0.3 5.840.5 6.9+0.5
(b)
Algorithms . Dataset§ .
MIR-Gaussian ~ MIR-Outlierl ~ MIR-Outlier2
Aggregated 5.740.1 7.5£0.1 9.8+0.3
Instance 6.10.1 10.8+0.3 10.8+0.1
Prime 7.241.7 8.1+1.8 9.9+1.7
Pruning 6.0+0.1 7.1+0.4 8.9+0.2
Cluster 5.740.3 7.0+0.1 9.240.3
EM™ 5.620.0 5.9+0.1 7.120.1
EMS 5.840.0 8.6+0.2 9.4+0.2
EM® 5.620.1 6.8+0.9 7.540.6
(©)
Algorithms . Datasets .
MIR-Gaussian MIR-Outlier]  MIR-Outlier2
Aggregated 7.140.2 13.310.2 14.0+0.6
Instance 6.940.1 11402 13.0+0.3
Prime 6.940.3 9.740.1 10.4+0.5
Pruning 6.740.1 9.5£0.1 10.6+0.3
Cluster 7.340.2 12.4+0.1 15.141.2
EM™ 6.6+0.1 9.340.2 10.240.2
EM® 6.740.0 13.1+1.7 12.141.0
EM® 6.60.1 10.4+1.4 9.9+0.4

it should be noted that the advantage of EM-MIR algorithms
over competitors was even more pronounced. For small bag size
of b = 5, accuracy of all MIR algorithms deteriorated, indicat-
ing their sensitivity to bag size. The relative performances of
MIR algorithms mostly remained similar. However, it should
be noted that performances of aggregated, cluster, and EM®
suffered the most, while prime was the most resilient to the
reduction in bag size.

In Fig. 1, the details of the evolution of the EM%? — MIR
algorithm are shown. We can see that the regression curve was
refined during the EM iterations and eventually closely matched
the regression function.

VII. EXPERIMENTS ON REMOTE SENSING DATA

We start this section by describing five remote sensing data
sets and then summarize how different MIR algorithms per-
formed on them.

A. Remote Sensing Data Sets

Two applications studied in this paper are AOD retrieval and
crop yield prediction from remotely sensed data. The summary
of the five data sets is in Table VI.
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initilization

5-th iteration

final iteration

Fig. 1. Improvement of regression curves of EMG2 — MIR on Outlier] data for h(z) = x2. (Red solid curve is the true function, black slash curve is the
regression function, blue dots are the bag instances, and magenta circles are the prime instances. Each horizontal line of dots corresponds to a bag.)

TABLE VI
SUMMARY OF REMOTE SENSING DATA SETS
Data sets #bags #instances in bags Dimensions
AOD-MISR1 800 100 16
AOD-MISR2 800 100 16
AOD-MODIS 1364 100 12
CROP-WHEAT 388 100 40
CROP-CORN 368 100 40
280
39.5 270
260
394 250
393 240
230
392 e20
210
X 200
30.1 BN 100
30 bl 180

Fig. 2. AOD prediction: 50 x 50 km? MISR reflectance.

Aerosol Retrieval (Fig. 2). Aerosols are small airborne
particles that both reflect and absorb incoming solar radiation
and whose effect on the Earth’s radiation budget is one of the
biggest challenges of current climate research. AOD retrieval
from satellite measurements is an important remote sensing
task. We used collocated ground-based and satellite data from
two instruments, MISR and MODIS.

AOD-MISRI1 data set is a collection of 800 bags collected at
35 AERONET [9] ground sites (Fig. 3) within the continental
U.S. between 2001 and 2004 from the MISR satellite. Each
bag consisted of 100 instances, representing randomly selected
pixels within 20-km radius around the AERONET site. The
instance attributes were 12 reflectances from the three middle
MISR cameras as well as four solar and view zenith angles.
The bag target value was the AOD measured by the AERONET
instrument within 30 min of the satellite overpass.

AOD-MISR2 data set has the same properties as AOD-
MISRI1. The only difference is that the 100 bag instances were
sampled only from the noncloudy pixels. The two data sets were
used to better characterize different MIR algorithms, because
cloudy pixels are known to be noisy and lead to reduced
retrieval quality.

Fig. 3. Locations of 35 ground-based stations for aerosol measurement.

AOD-MODIS data set was constructed using the MODIS
satellite instrument. AOD-MODIS consists of 1364 bags col-
lected at 45 AERONET sites within the continental U.S. be-
tween 2002 and 2004. Each bag consists of 100 instances.
The instance attributes were seven MODIS reflectances and
five solar and view zenith angles, and the bag label was the
corresponding AERONET AOD measurement.

To support the MIR research, AOD-MISR1, AOD-MISR2,
AOD-MODIS, and the synthetic data can be found at
http://www.dabi.temple.edu/~vucetic/MIR .html.

Crop Yield Prediction (Fig. 4). The goal of crop yield
prediction is to estimate accurate crop yield using the remote
sensing observations over a specific region. The WHEAT and
CORN data sets [27] used in this study consist of more than
350 labeled bags collected between 2001 and 2004. Each bag
represents one of 100 counties within Kansas, USA. Bag labels
are average wheat and corn yields within the county based on
the U.S. Department of Agriculture records. Each bag consists
of instances representing 100 randomly selected MISR pixels
within each county. Each instance is a 92-D vector comprising
of 46 daily observations during the growing season in two
spectral bands. The observations during the first 15 and last 11
days were noisy, and the corresponding attributes were removed
from the data set. Instances in the resulting data set contained
40 attributes.

B. Experimental Design

We evaluated various MIR algorithms on the five described
data sets. As the regression model f in all algorithms, we used
feedforward neural networks with one hidden layer and ten



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

-102 101
(a)
T .
el
e o AN 107 ‘. A Ny e 5T 1800
39.5 AN ke 3 S U\
|", 5 2 - 5 ~ 1 1600
39 (A A o Y i 1400
o o I RS Y 5 %) '
e A t i v 1200
38.5 [ Sl faak sl = 4 W it
L - 1000
38 00
37.5 | 4 b 4 600
mlFE . e
-102 101 100 -99 -98 -g7 -96 -95
(b

Fig. 4. Crop yield prediction. (a) Kansas corn yield over counties. (b) Kansas
reflectance over counties.

TABLE VII
RESULTS ON FIVE REMOTE SENSING DATA SETS. FOR AOD DATA,
ACCURACY Is RMSE x 100; FOR CROP DATA, ACCURACY IS RMSE

Data sets

Algorithms CROP- CROP- AOD- AOD- AOD-
WHEAT CORN MISR1 MISR2 MODIS
MEAN 11.3+0.5 39.040.4 18.6+0.8 18.6+0.8 19.3+0.7
Aggregated  5.440.1  28.4+03 10.440.1 8.140.1 11.8+0.1
Instance 6.3+02  30.0£0.3 10.0+0.1  8240.1 11.240.1
Prime 6.6+04 314405 9.5+03 8.240.1 11.1+£0.3
Pruning 57402  27.740.2  8.3+0.1 8.1£0.3 10.60.1
Cluster 7.5+03 333421 10.5+0.6  9.8+1.0 11.8+0.6
EMP 5.440.1 28.740.6  8310.6 7.4+0.4 10.8+0.4
EMPP 5.1£0.1  26.8+0.2  7.8+0.1 7.74£0.1 9.840.1
EMS® 5.440.1 274407 8.5+0.1 7.610.3 10.0£0.2
EM® 4.9+0.1 27.5+0.2  7.5£0.1 7.3+0.1 9.5+0.1

hidden nodes. As function g in EM® —MIR and EM%2 —MIR,
we used feedforward neural networks with one hidden node.
The resilient backpropagation algorithm was iterated 200
epochs for training of f and 50 epochs for g. For pruning-MIR,
we used five iterations of instance removal. For instance-MIR,
prime-MIR, and pruning-MIR, the median predictor (8) was
used in the testing stage. The EM-MIR algorithms were iterated
until convergence (the increase of the objective (18) is less than
0.1). For cluster-MIR, we still experimented with different &
({5, 15, 30}) and only reported the best result.

Accuracy of each MIR algorithm was evaluated using
5-cross-validation (5-CV) where the bags were randomly split
into five subsets; one subset was reserved for testing and the
others for training of an MIR predictor; the procedure was
repeated five times, each with different subset reserved for
testing. The 5-CV was repeated ten times, and the average
RMSE is reported in Table VII. Values in bold indicate the best
results for each data set.

We used two more algorithms in addition to the already
described ones. A baseline MEAN predictor was used for

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

benchmarking of other algorithms. In MEAN, the average
target value from training bags was used to predict label of a test
bag. In aerosol retrieval, it has been known that the darkest and
brightest pixels are highly likely to be noisy. This knowledge
has been used in the operational MOIDS AOD prediction
algorithms that remove the darkest and brightest pixels prior to
prediction. Following this, we used the deterministic prior that
assigns 7;; = 0 to 20% of the darkest and 50% of the brightest
instances” and ;; = const to the remaining instances. We call
the resulting EM algorithm EMP — MIR in Table VII.

C. Results

From Table VII, it could be seen that all MIR algorithms
achieved significant improvement over MEAN on all five data
sets. EMPP — MIR and EM%2 — MIR were the most accu-
rate on the two crop data sets. EMP — MIR, EM® — MIR
and pruning-MIR had lower, but still competitive, accuracies.
Interestingly, aggregated-MIR was highly competitive, which
indicates that attribute averaging was a fortunate choice for
the crop data sets. On the other hand, accuracy of instance-
MIR was quite low, which indicates that instance attributes
were quite noisy. Prime-MIR was less accurate showing that
the aggressive search for prime candidates was not appropriate
on the crop data. Cluster-MIR was the least accurate MIR
approach which shows the clustering assumption was not held
on the remote sensing data.

EM%2 — MIR was the most accurate algorithm on AOD data
sets, and it was followed by the other EM"'P — MIR algorithms.
Unlike its performance on crop data, aggregate-MIR was the
least accurate MIR method on AOD data. Instance-MIR fared
only slightly better. This indicates that AOD instances are both
noisy and biased: 1) land cover is a source of attribute noise,
and it tends to be quite variable, and 2) the near-prime instances
correspond to dark surface pixels (causing the mean of the
attribute noise in (4) to be positive). Accuracy of prime-MIR
was overall better than on the crop data, but it still signifi-
cantly lagged the best MIR algorithms. Pruning-MIR was quite
competitive.

Comparing results on AOD-MISRI and AOD-MISR2 data
sets, the accuracy of all algorithms was higher on the noncloudy
AOD-MISR2. Importantly, it could be seen that EMS? — MIR
and EMPP — MIR, in addition to being the most accurate on
both data sets, appeared very robust to the existence of cloudy
pixels, unlike other MIR algorithms. We point to the impressive
result on AOD-MISR1 data, where RMSE of EM&2 — MIR
was more than 25% lower than RMSE of baseline instance-
MIR. Comparison between AOD-MISR1 and AOD-MISR2
results indicate that data cleaning based on the domain knowl-
edge can be very useful and could blur the difference between
various MIR algorithms.

2For two AOD-MISR data sets, brightness is defined based on the reflectance
from the nadir camera at wavelength 466 nm. For AOD-MODIS data set, we
used the reflectance at wavelength 446 nm. For two crop data sets, ideally prior
should be set according to land cover information. However, this information is
unavailable for this data set. Therefore, we still used the same prior as for the
aerosol data sets. Specifically, we used the median value of the time series at
red wavelength to calculate brightness,
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Fig. 5. Accumulated prime prior probability, sorted by darkness in prediction
stage on AOD-MISR2 data. (a) EMPP — MIR. (b) EMG2 — MIR.

While results from Table VII show that domain knowledge
can be helpful in improving accuracy of MIR algorithms, we
explored to what extent it can be revealed by the proposed
EM framework. In Fig. 5(a), we show the histogram of 7;;
values of bag instances calculated by EMPP — MIR. The
z-axis is sorted from the darkest to brightest instance. We
can observe that the weight given to the brightest and darkest
instances is low. This outcome is consistent with the pixel
masking procedure commonly applied in aerosol retrieval. For
example, in MODIS operational algorithm, 10% of the darkest
and 60% of the brightest pixels are masked prior to retrieval, as
it has been observed that this results in higher retrieval accuracy
[23]. The justification for removal of the darkest pixels is that
they might represent contamination by cloud or topographic
shadows. Fig. 5(b) shows the results by using EM%? — MIR.
We can see the parametric function g in EM%? — MIR learned
that darker instances are more important than brighter instances.
Considering that EM%? — MIR was the most accurate algo-
rithm, it could be concluded that removal of the darkest pixels
might not be necessary on the AOD-MISR2 data. This result
adds to the ongoing discussion about the need to mask the
darkest pixels before aerosol retrieval [20].

VIII. CONCLUSION

The MIR setting is applicable when instances can be as-
signed to multiple bags, each with a single real-valued label.
Interestingly, MIR is very relevant to a number of remote
sensing problems. As illustrated in this paper, this includes
retrieval of atmospheric parameters and spatially aggregated
quantities from high-resolution satellite images.

The basic assumption in the proposed EM algorithm for MIR
is that the bag label is a noisy function of the ideal, or prime,
instance. Given this assumption, we used a mixture model
that determines bag label probability as a weighted sum of
the label probabilities from individual instances. The learning
objective was to determine the prior function and the prediction
functions, and it was solved by the EM algorithm.

The proposed MIR framework is very flexible—it allows to
encode the domain knowledge about the problem through the
prior function, but it could also be applied well when relatively
little is known about the problem. It is evident that the success
of the proposed MIR approach in any particular application will
depend on the modeling skills and domain knowledge about the
studied problem. The proposed framework also subsumes sev-
eral previously proposed MIR algorithms as the special cases.

The experimental results show that EM-MIR is superior to
the previously proposed MIR algorithms, as well as to the
baseline algorithms that treat MIR as the standard supervised
learning problem. This indicates that EM-MIR could be useful
when solving many remote sensing and related problems in
other disciplines. We also observed that the proposed and
existing MIR algorithms are sensitive to instance and label
noise, and that their accuracy deteriorates with the complexity
of the regression problem, and it increases as the size of the
bags increases. These properties should be kept in mind when
applying MIR algorithms in practice.
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