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ABSTRACT
Recognizing entities that follow or closely resemble a regular expres-
sion (regex) pattern is an important task in information extraction.
Common approaches for extraction of such entities require hu-
mans to either write a regex recognizing an entity or manually
label entity mentions in a document corpus. While human effort
is critical to build an entity recognition model, surprisingly little
is known about how to best invest that effort given a limited time
budget. To get an answer, we consider an iterative human-in-the-
loop (HIL) framework that allows users to write a regex or manually
label entity mentions, followed by training and refining a classifier
based on the provided information. We demonstrate on 5 entity
recognition tasks that classification accuracy improves over time
with either approach. When a user is allowed to choose between
regex construction and manual labeling, we discover that (1) if
the time budget is low, spending all time for regex construction
is often advantageous, (2) if the time budget is high, spending all
time for manual labeling seems to be superior, and (3) between
those two extremes, writing regexes followed by manual labeling
is typically the best approach. Our code and data can be found
through https://github.com/nymph332088/HILRecognizer.
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1 INTRODUCTION
Entity extraction occupies a prominent place in information re-
trieval. Named entity recognition, the most recognized entity ex-
traction subtask, seeks to automatically identify substrings that
represent specific people, locations, events, or organizations. Be-
side named entities, there is a large class of entities that are not
“named," such as expressions of dates, times, email addresses, phone
numbers, currencies, credit card numbers, social security numbers,
measurements, and object properties. These types of entities can
often be expressed or approximated by a regular expression (regex)
and are the focus of this work. They have drawn interest from
several communities, including NLP [9, 17, 21], databases [17], data
mining [1–4], and life sciences [20, 27].

Two common approaches to recognize regex-like entities are
to (1) manually create a regex and (2) train a machine learning
model, both of which have their advantages and disadvantages.
Most programmers are familiar with regex and can write reasonably
accurate entity recognizers with relatively little effort, without the
need to use machine learning software. However, once a regex goes
beyond a level of complexity, writing it requires a lot of time and
experience and results in brittle recognizers, leading to a saying
"Now you have two problems" [14]. Even a seemingly simple task
of recognizing an email address requires 6,500 characters [19]!

Machine learning (ML) approaches attempt to either infer a regex
or create an regex-oblivious model. Regex learning approaches
[3, 4, 17, 21, 26] require a set of substrings and focus on construct-
ing a short regex recognizing the substrings. Similarly to manual
construction of a regex, the existing approaches quickly end up
in very long and brittle formulas and are not commonly used in
practice [3]. In regex-oblivious approaches, the objective is to train
a model such as a neural network (NN) from labeled substrings
[28]. An advantage is that labeling does not need programming
expertise. A disadvantage is that this approach requires a large set
of labeled examples. In the rest of the paper, when we refer to ML
methods we refer to the regex-oblivious approach.

In our recent work we proposed a human-in-the-loop (HIL)
framework [28] that uses human effort to both write a regex and to
manually label the documents. As will be elaborated in the method-
ology, a regex is used to scan a document corpus and produce weak
labels to pretrain an NN. Then, manually labeled substrings are
used to fine-tune the network. The results showed that fine tuning
a pretrained NN is superior to training it from scratch. Thus, the
results indicate that writing a regex before manual labeling is highly
desirable. However, this conclusion does not take into account the
time needed to create a regex and regex writing expertise. In this
study, we consider the problem from a practical perspective, where
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a human is given a fixed amount of time to interact with the ML
system for entity recognition.

Time and expertise are critical factors in a HILML system such as
the one we consider. Let us look at a potential real-life scenario. Let
us imagine a data scientist Amy, faced with a challenge of extracting
publication dates from a corpus of hundreds of thousands of news
articles crawled from the Web given a one hour deadline. Just
finding a single mention of date would include a lengthy scanning
of articles and would make the task infeasible. Alternatively, Amy
may remember that all articles are published in 2019 and write
simple regex 2019 to identify date mentions with a high recall. Then,
she glances over the extracted substrings surrounding mentions of
2019 and does one of the two things: (1) start labeling the dates or (2)
realizing that all dates seem to follow a particular pattern, proceed to
write a regex. Regardless of what she does, an ML algorithm would
crunch the information provided by Amy and keep upgrading the
NN for date recognition. Even if Amy starts writing a regex, another
question is whether she should spend time trying to improve the
regex or stop and start with manual labeling. We are not aware of
published results that may inform Amy how to efficiently invest
her time. We set to gain insight into this problem in this work.

We make the following contributions in this paper:
• We propose a framework that recognizes an entity (i.e.,
character-wise classification). In our previous work [28] we
developed a HIL framework for classifying if a string con-
tains an entity of interest (i.e., sequence-wise classification).

• We propose an algorithm for active selection of substrings.
• We perform a thorough characterization of the proposed
framework on 5 entity recognition tasks.

• We perform a small-scale user study to obtain insight into
the trade-offs between spending time to write regular expres-
sions and spending time to manually label text fragments.

2 RELATEDWORK
This section briefly reviews several lines of research we deem to be
most related to our work.

Regex Refinement and Inference. This line of research aims
to (partially) automate regex construction. One research direction
focuses on improving the precision and recall of initial regexes by
identifying true or false matches [17, 21, 26]. They start from a
user defined regex with either high recall, but low precision, [17]
or high precision, but low recall [21], and search for an improved
regex. In either case users need to create true positive and negative
instances in the matching set of the initial regex. Some works seek
to reduce human labeling efforts in this process, e.g., new matches
of candidate regexes are automatically grouped into positives and
negatives by comparing their context similarities to those of the
generalized regex [26]. A different line of work attempts to induce
regexes from positive and negative sample strings [6, 10, 11]. They
do not require an input regex. The most recent approach uses
genetic programming [3, 4]. All these efforts require human input,
such as a set of examples, or an initial high precision regex, or
manually labeled negative and positive matches of regexes. These
works are not discussed nor quantified the human effort.

Human Annotation Effort: An important area of research in
ML seeks to reduce the human annotation effort, both in scale (i.e.,

amount of labeled instances) and form (e.g., weak labels). This is
a broad area of research and we limit our coverage to the entity
mining literature. One line of work uses solely weak labels to train
NER models. Distant-LSTM-CRF [13], AutoNER [24], and Swell-
Shark [12, 23] are examples in this category. String matching and
(expert) rules are common means to generate weak labels.

Active learning aims to smartly involve human judgment in
the training of a model. In NER, this follows a 2-iteration process.
In the first iteration, the system samples sentences according to
some heuristics, asks users to annotate them, and trains an initial
NER model. In the second iteration, the system iteratively recruits
unlabeled sentences by a scoring function for human annotations.
The work in [7] uses the longest sentence selection heuristic in the
first iteration and 12 scoring functions in the second iteration. In
[25], a bag of initial models is trained with a seed hand-labeled data
set. They use the disagreement among the bag of models measured
in KL-divergence and f-complement for scoring.

We are not aware of any work in this space that couples weak
supervision with actively learning as we propose in this work. In
addition, although weak labeling is cheaper than standard labeling
it still incurs human cost. This is largely ignored in the literature.
We consider this factor in our framework.

3 PROPOSED FRAMEWORK
Problem definition Given a corpus of documentsD and an entity
type E, the objective is to create an accurate entity extractor for E
while limiting the total human effort within T minutes.

We give an overview of our solution in Figure 1 (left). The input
of our framework is a document corpus D and an entity type E

(e.g. phone number). It outputs an entity extractor. The proposed
framework has several modules. The first module selects candidate
substrings that are likely to contain an entity mention. Given the set
of candidate substrings, the second module is responsible for weak
labeling them. This is accomplished with a regex. The third module
trains an NN for entity extraction using a set of labeled substrings.
The fourth module selects a subset of substrings for human labeling.
After the selected substrings are manually labeled by a human, they
are fed back to module 3 for fine-tuning of the NN. We highlight the
places where human effort is needed with a clock symbol. A human
expert invests time in three ways in the system. She (1) creates
a regex for module 1 that selects candidate substrings with high
recall and allowing for low precision, (2) creates a regex for module
2 that weakly labels the candidate substrings with relatively high
precision and recall, and (3) manually labels an unlabeled substring
in module 4 by highlighting substrings corresponding to an entity
mention. We provide technical details in this section.

3.1 Selection of Candidate Substrings
The core objective of our framework is to minimize human effort
needed to build an entity extraction system. As will be specified
later, the user is expected to scan the corpus and recognize entity
mentions. In a typical entity extraction scenario, the number of
entity mentions in a corpus is relatively small compared to the total
size of the corpus. Thus, it is very helpful to users if we automatically
exclude portions of the corpus that do not contain entity mentions.
Our main observation is that it is often possible to specify a simple
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Figure 1: Overview of the solution framework(left) and deep learning architecture (right) used to train entity recognizer.
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Figure 2: An example of course number recognition on a HTML document. Only 5 of the 9 S0 candidate substrings are shown.

regex that recognizes entities with a high recall (i.e, including most
of the entities) and a relatively low precision (i.e., allowing a high
fraction of false positives). For example, if our objective is to extract
course numbers, a regex that recognizes two or more digits (e.g.,
\d{2,4}) is likely to capture most of the course mentions in the
U.S universities. It is evident that such regex also recognizes many
strings that are not related to course numbers, thus resulting in
low precision. We denote a regex used for recognition of candidate
entities as RE0 and call it the candidate regex.

For each match of the candidate regex, we generate the candidate
substring by expanding it with L

2 characters before and after it in
text.L is such that it guarantees that the string fragment includes the
entity mention and has sufficient context surrounding the mention.
This helps determine if a substring contains the entity. We denote
the set of candidate substrings obtained in this way from corpus
D by S0 = {s1, s2, ..., sn }, where n is the number of strings RE0
matches.

We need to emphasize that, in our framework, the role of RE0
is to remove portions of the corpus that clearly do not contain
entity mentions. It is not critical that the precision of the candidate
substrings is high. Instead, the emphasis is on encouraging the user
to quickly come up with a simple RE0 that has a good recall.

3.2 Weak Labeling
Given the set of candidate substrings S0, our objective is to label and
use them to train an NN model for entity extraction. The NN has
to predict each character in a candidate substring as either positive
(belonging to an entity) or negative (not belonging to an entity).
Given those character-wise predictions, the entity is identified as
a string of consecutive positively labeled characters. Thus, it is
possible that we may extract multiple entities from a candidate
substring.

A straightforward approach for labeling S0 strings is to ask a
user to manually label some or all of its substrings. As will be shown
in the experimental results, this approach is inefficient when S0 is
very large. Instead, we propose a weak labeling approach aided by
regex. In particular, we allow the user to provide a regex with a
moderately high precision on S0. If an entity is well studied (e.g.,
date, email address), it is possible that one may find a good regex
quickly by searching the web. Otherwise, it is assumed that the user
is experienced enough with regexes and able to come up with a
good regex in a reasonable amount of time. To aid the user, we can
supply a random subset of S0 substrings within a freely available
regex testing and debugging tool (e.g. https://regex101.com [17]).
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We denote the resulting regex by REwl , where the subscriptwl is
an abbreviation for weak labeling.

Given REwl , we can automatically weakly label all the substrings
in S0. Swl denotes the resulting weakly labeled data set. We use
Swl to train an NN NNwl . We expect that the recall and precision
of NNwl is comparable to REwl . The benefit of training NNwl
compared to directly using REwl , which is the traditional approach
for entity extraction, is that NNwl can be further fine tuned and
improved once manually labeled substrings become available.

3.3 Entity Recognizer
Given the set of labeled candidate substrings from S0, the next
objective is to train an NN that classifies each character within a
candidate substring. NN architectures include but not limited to
BiLSTM + CNNs [8], BiLSTM + CRF [16], and BiLSTM + CNNs
+ CRF [18]. In this study we use a BiLSTM + CNNs architecture
illustrated in Figure 1 (on the right).

For a candidate substring with L characters, an embedding layer
is used to map the l th character (l = 1, 2, ...,L) into a real valued
vector el , where el ∈ Rp and p is the size of character embedding.
Two or more Bidirectional LSTM (BiLSTM) layers are used to gener-
ate hidden vectors at each position l . One layer of BiLSTM contains
two stacks of regular LSTM cells. The forward LSTM cells process
the input string from the beginning to the end, while the backward
LSTM cells go from the end to the beginning.

The loss function for the ith string at the l th position is defined
as the cross entropy function. To train the deep learning model,
we average the losses from all characters in the training set. We
add a dropout layer after the embedding layer and each of the
BiLSTM layers to avoid overfitting. To predict labels in a string
during testing we assign each character to the class with the largest
probability. We denote the vector of prediction of si as ŷi .

3.4 Fine-Tuning with Human Labels
The benefit of training an NN onweakly labeled data is that it can be
fine-tuned and improved using manually labeled data. Assume we
already trained NNwl . The next questions are how many candidate
substrings to manually label and how to select them from S0. In
our framework, we ask the user to label K candidate substrings
and then fine-tune the NN. We repeat the manual labeling and
fine-tuning process until reaching the desired accuracy or the time
limit.

The baseline approach to selection of substrings to be labeled is
to select K substrings at random from S0. We refer to this selection
algorithm as the Random Querying (RQ). A more sophisticated
approach is to use active learning, which attempts to select K sub-
strings that result in the fastest increase in accuracy. Among the
many active learning algorithms proposed in the ML literature [15],
the ones based on the uncertainty principle have been the most suc-
cessful over a large range of application. In particular, the examples
on which the current predictor is most uncertain are more likely to
be selected. If a sigmoid neuron is used as output of an NN, we can
interpret its output for the l th character of string s as class probabil-
ity, p(yl |sl ). The uncertainty of the prediction of the l th character is
defined as entropy E(sl ) = −

∑
k=0,1 −p(yl = k |sl ) logp(yl = k |sl ).

Higher entropy indicates high uncertainty.

To select the most uncertain subsequences, we need to aggregate
the entropy over each subsequence. We denote uncertainty of a
subsequence as E(s). We consider several options for aggregation,
e.g., averaged entropy, maximum entropy, and maximum entropy
over a window (it is reported superior in [7]). While the differences
are not large, we experimentally observe that maximum entropy
is slightly better than the alternatives. We refer to the selection
algorithm that picks the K most uncertain subsequences as the
Max Entropy (ME). When using the ME, it is possible that the
most uncertain K substrings are highly redundant. Inspired by the
idea of pre-clustering before active learning [22], we consider an
alternative that first selectsM > K substrings from S0 at random
and then usesME to select themost uncertainK substrings.We refer
to this selection algorithm as the Random then Max Entropy
(RME).

3.5 Summary of the Framework
In Figure 2, we take course number as a running example and
illustrate the intermediate data generated along the steps of our
framework. We give the details in the following subsections. One
notices that the user is involved in 3 steps of the algorithm: (1)
creating candidate regexRE0, (2) creating weak labeling regexREwl ,
and (3) labeling candidate substrings. The total human effort is a
sum of the efforts on those 3 steps. The effort for the creation of
RE0 is assumed to be significantly smaller than for the other 2 steps.
If we are given the time budget for human effort and assuming
that the time to create RE0 is negligible, an open question is how
should the time be split between steps (2) and (3). We design our
experiments to gain insight into the trade-offs between spending
time to create a good regex and to manually label the candidate
substrings.

The proposed framework also allows skipping one or more of the
3 steps. For example, instead of step (1), we can create the candidate
substrings from all or from randomly selected substrings of length
L. We can also decide to skip step (2) and train the first NN on the
first K manually labeled candidate substrings selected from S0 at
random. We can refer to such an approach as the cold start. Finally,
we can decide to skip step (3). In this case, we can decide to directly
use REwl for entity extraction. We will evaluate all those scenarios
in the experimental studies.

4 EXPERIMENTAL DESIGN
In this section we describe the entity extraction tasks we created
to evaluate our framework and perform user studies.

4.1 Entity Recognition Tasks
We consider 5 entity recognition tasks in our experimental study:
• DATETIME recognition: we downloaded HTMLs of 6,000 English
news articles published from August 24 - 30, 2017. They are
randomly selected from 0.6 million articles in the Kaggle dataset1.
The task is to extract datetime in 2017 from the source HTML.

• BILLDATE recognition: we downloaded 600 OCR scanned U.S.
Congress bills2. The task is to extract dates from the bills.

1https://www.kaggle.com/therohk/global-news-week
2http://machinelearning.inginf.units.it/data-and-tools
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Table 1: Summary of documents in the 5 entity recognition tasks.

Domain |D|
Doc avg length

(chars)
Number of
entities in D

Annot time
(hrs)

Rate
(ms/ch)

Entity avg length
(chars)

DATETIME 6,000 137,379 1,399 ∗ 22 127 21.63
BILLDATE 600 27,518 3,085 - 100∗∗ 12.63

EMAILADDRESS 602 1,284 2,206 16 74.5 21.92
COURSENUMBER 600 4,586 4,588 60 78.5 6.46
PHONENUMBER 3149 2674 2,018 150 65.9 13.64
* The number of entities in 6,000 strings in S0, one string per document.
** A reasonable guess of the human annotation rate.

• EMAILADDRESS recognition: the task is to extract email addresses
from 602 emails in the publicly available Enron email data set3.

• COURSENUMBER recognition: we downloaded 600 HTMLs from the
4 Universities Data Set at CMU (Web->KB) project4. The task
is to extract course numbers from faculty and department web
pages.

• PHONENUMBER recognition: we downloaded 3,149 documents, 2,000
of them from the 20 newsgroup dataset5 and the remaining 1,149
from the 4 universities data set. The task is to extract phone
numbers from newsgroup messages and personal web pages.

We gathered various types of documents, ranging from HTML
pages to OCR scanned documents. In Table 1, we list the basic
statistics about documents in each of the 5 recognition tasks. The
average length of a document varies a lot across the tasks, ranging
from 1, 284 in EMAILADDRESS to 137k in DATETIME.

4.2 Labeled Data for Evaluation
In order to allow comprehensive evaluation, we used student volun-
teers to manually label all documents in EMAIL, COURSENUMBER and
PHONENUMBER corpuses. For documents in BILLDATE task, we knew
the ground truth based on [3], so we did not use volunteers. For
DATETIME task, we deemed too time consuming to label all the 6,000
documents; instead, we manually labeled one randomly selected
substring from each document that contained 2017 in the center.

We list the number of entities in each corpus in Table 1. We also
list the total time our volunteers took to annotate the corpus in each
task and report the labeling rate as (milliseconds /character), which
is calculated as the total time divided by the number of characters
in the corpus. We assert that the labeling rate for BILLDATE task,
is similar to that of DATETIME task. We observe that COURSENUMBER,
EMAILADDRESS, PHONENUMBER are easier to label than DATETIME, and
that the average entity length ranges from 6 to 20.

4.3 Accuracy Measures
We conduct all of our experiments using document-level 5-fold cross
validation. We first divide documents into 5 subsets at random. We
train the models on candidate substrings generated from documents
in 4 out of the 5 subsets and test them on the candidate strings in the
remaining subset. The reported accuracies are averaged over the
5 repetitions within the cross-validation. We report position-level
and entity-level accuracy.
3https://www.cs.cmu.edu/~./enron/
4http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
5www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.html

Suppose there are N characters in the test set and denote the true
labels for the i-th characters asyi and its prediction as ŷi . We define
the positional precision (PosPrec), the positional recall (PosRecall)
and the positional F1 (PosF1) as:

PosPrec =
N∑
i=1

1(yi == 1 ∧ ŷi == 1)
/ N∑
i=1

1(ŷi == 1)

PosRecall =
N∑
i=1

1(yi == 1 ∧ ŷi == 1)
/ N∑
i=1

1(yi == 1)

PosF1 = 2 · PosPrec · PosRecall
/
(PosPrec + PosRecall)

(1)

Entity level accuracies are calculated considering entities in the
test strings. Suppose there are P ground truth entities in the test
strings, denoted as Etrue . After we get positional predictions for
test strings, we extract the predicted entities as substrings of con-
secutively predicted positive characters. Assuming there are Q
predicted entities in Epred , we can calculate the size of their inter-
section |Etrue ∩ Epred |. We define the entity precision (EntPrec),
the entity recall (EntRecall) and the entity F1 (EntF1) as

EntPrec = |Etrue ∩ Epred |
/
|Epred |

EntRecall = |Etrue ∩ Epred |
/
|Etrue |

EntF1 = 2 · EntPrec · EntRecall
/
(EntPrec + EntRecall)

(2)

5 FRAMEWORK CHARACTERIZATION
In this section, we study the proposed framework and its compo-
nents, without focusing on user time.

5.1 RE0 for Candidate Substring Extraction
The first step in the framework is creating the candidate regex RE0
with high recall. We instructed one of the coauthors to come up
with RE0 for each of the 5 tasks in less than 5 minutes per task.
Table 2 lists the resulting candidate regexes. For the DATETIME task,
since the 6,000 documents are from August 24 - 30, 2017, the regex
assumes that string 2017 occurs in all datetime entities listing year
2017.

Using the labels we collected for all the tasks (Table 1), we are
able to evaluate the precision and recall of RE0 defined as Prec =
#True entities hit by RE0
#Total hit of RE0 in D

, Recall = #True entities hit by RE0
# Total true entities in D

, respectively.
As can be seen in Table 2, the recall is very high on all 5 tasks, while
the precision is quite low, as expected.
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Table 2: Summary of the RE0.
Domain RE0 Prec Recall |S0 | %Cov
DATETIME 2017 0.194∗ 1.0∗ 761,002 9.23
BILLDATE \d{2,4} 0.105 0.980 72,258 43.8

EMAILADDRESS @ 0.392 1.0 5,488 71.0
COURSENUMBER \d{2,4} 0.112 0.969 43,623 79.2
PHONENUMBER \d{3,4} 0.198 0.990 25,087 29.8
* Assume all datetimes have "2017".

Each substring recognized by RE0 becomes an anchor for a can-
didate substring. Each candidate substring is formed by taking L

2
characters preceding the start of the match and L

2 characters suc-
ceeding it. We set L = 100 in all experiments. As seen from Table 2,
for BILLDATE, the total length of S0 (= 72, 258 ∗ 100) is 43% of the
original corpus (= 6, 000 ∗ 27, 518) while it still contains 98% of all
the true entity mentions. Thus, |R0 | more than doubles efficiency
of manual labeling.

5.2 REwl for Weak Labeling
For experiments in this section, we assume that REwl is already
available and ask if pretraining an NN on weak labels obtained from
REwl is beneficial. We collect regexes to instantiate REwl from the
web and published papers. For BILLDATE, the regex is from [21].
We use the top five regexes from the Rege Library6 website for
EMAILADDRESS. For PHONENUMBER, seven out of eight regexes are
from [21], and the remaining one is from [17]. We use four regexes,
one of which is borrowed from the results learned by ReLIE [17],
and the remaining three are from [21] for COURSENUMBER. We use
a disjunction of the collected regexes in each task as REwl . Those
REwl are used on the candidate substrings to generate weak labels.

5.3 Hyperparameter Tunning and Settings
Deep learning is very sensitive to hyperparameters. A common
approach to tune the hyperparameters is to explore several combi-
nations of hyperparameters on validation data. However, since our
framework relies on an iterative process that repeatedly fine-tunes
an NN on an increasingly large set of labeled substrings, this stan-
dard approach is not feasible. Instead, we tune the hyperparameters
on a subset of the weakly labeled data. We use the random search
algorithm proposed in [5] that was proved more effective than the
grid search. The best hyperparameters obtained in this way are used
in all the experiments.

We set the activation function in the first fully connected layer to
tanh and the batch to 512. We also add dropout layers after the em-
bedding layer, the max pooling layer, and the first fully-connected
layer to avoid overfitting, with the dropout rate set at 0.5. Our im-
plementation is in PyTorch. With pre-defined REwl , we can tune
the learning rate (lr), the dimension in the character embedding
layer (emsize), the hidden units size (nhidden) in BiLSTM layers
and the number of BiLSTM layers (nlayers) by 5-fold cross valida-
tion using a random sample of weakly labeled data. We explore the
following ranges for the hyperparameters: lr = 2−k , k ∈ [6,7..,12],
emsize ∈ [20, 30, 40, 50, 60, 70, 80] nhidden ∈ [50, 75, 100, 125, 150,

6http://www.regexlib.com/

200] and nlayers ∈ [1, 2, 5]. We select a set of best hyperparameters
for each task.

We used 5 epochs to train an NN on weakly labeled data Swl . For
each round of fine-tuning, we use all previously collected manually
labeled substrings Sh and train for 10 epochs over Sh . For selection
of candidate substrings for labeling, we select them from a pool of
10,000 randomly selected candidate strings. We set the number of
strings to be labeled in each iteration to K = 20. For RME selection
algorithm, we setM to 500.

5.4 Impact of Weak Supervision
We evaluated 5 different approaches: (1)Random, which randomly
predicts 0 or 1 for any character. (2) REwl , which uses regexes from
Section 5.2 to recognize entity mentions. (3) NNREwl

, which is
the NN pretrained on weak labels generated by REwl . (4) RQ w/o
(100), which is the NN trained directly with 100 randomly selected
manually labeled candidate substrings. (5) RQ w (100), which is an
NN pretrained on weak labels and fine-tuned with 100 randomly
selected labeled candidate substrings.

In the top half of Table 3, we see that weak supervision helps in
two aspects. First, if we compareNNREwl

andREwl , we notice that
the weakly supervised model NNREwl

preserves the precision and
recall of the original regexes. Second, comparing RQ w (100) and
RQ w/ (100), we notice that pretraining on weak labels is superior.
It is worth poiting out that, as expected, the positional accuracy is
consistently higher than the entity-level accuracy.

5.5 Impact of Active Sampling
In this section, we evaluate the performance of 4 different sampling
strategies described in Section 3.4. The first two are random sam-
pling baselines, one being a cold start version without pretraining
and another with pretraining on weak labels generated by regexes
from Section 5.2. The last two are uncertainty-based, both using
the pretraining. Table 3 reports EntF1 and PosF1 scores achieved
by the 4 approaches after 1, 000 labeled candidate substrings. First,
we observe that pretraining an NN on weakly labeled data (RQ
w/ (1000)) is superior to the cold start training (RQ w/o (1000)).
Second, we observe that uncertainty-based sampling is superior to
random sampling on all 5 tasks. RME is slightly better than ME.

In Figure 3, we illustrate how the accuracy changes with fine-
tuning on the DATETIME task until one labels 1,000 candidate sub-
strings. We zoom in the tails of the learning curves in the small
embedded figures. The more time a user spends on annotation,
the better the performance of the NNs. The two uncertainty-based
approaches are superior to random sampling. The behavior is con-
sistent on other 4 tasks (not shown due to space constraints).

From Table 3, we observe that we can achieve around 0.95 PosF1
in all 5 recognition tasks, however, the EntF1 is always worse
than PosF1. It indicates that the NN entity recognizer predicts
partially correct entities quite often. As an example, 75% of the
partial matches in EMAILADREESS task differ from the true entities
by only 1-2 characters. This percentage is 35.3%, 30.9%, 36.1%, 30%
on the other 4 tasks respectively.

From these results, we conclude that, given a regex, it is beneficial
to pre-train an initial model with weak labels. We also conclude that
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Table 3: Impact of weak supervision and active learning on the 5 tasks.

Model
Name

Human
Annots

DATETIME BILLDATE EMAILADDRESS COURSENUMBER PHONENUMBER

EntF1 PosF1 EntF1 PosF1 EntF1 PosF1 EntF1 PosF1 EntF1 PosF1
Random 0 0 0.1004 0 0.0331 0.0002 0.2543 0.0002 0.0446 0 0.1335
REwl 0 0.4340 0.7104 0.2827 0.3519 0.8811 0.9695 0.3926 0.4299 0.3182 0.5196

NNREwl
0 0.4411 0.7103 0.2825 0.3529 0.8819 0.9733 0.4078 0.4354 0.3138 0.5179

RQ w/o (100) 100 0.0449 0.8218 0.2853 0.6164 0.6914 0.9716 0.5311 0.6838 0.1418 0.5921
RQ w (100) 100 0.5061 0.8675 0.508 0.6196 0.962 0.9907 0.6876 0.7899 0.6007 0.7787

RQ w/o (1000) 1000 0.8376 0.9343 0.8226 0.9169 0.9903 0.9973 0.8408 0.9129 0.7972 0.8903
RQ w (1000) 1000 0.8644 0.9420 0.8452 0.9177 0.9898 0.9973 0.8451 0.9175 0.8253 0.8964
ME (1000) 1000 0.8696 0.9537 0.9534 0.9838 0.9940 0.9959 0.9234 0.9514 0.8943 0.9359
RME (1000) 1000 0.8879 0.9565 0.9537 0.9829 0.9951 0.9983 0.8765 0.9373 0.8964 0.9401

Figure 3: 4 query algorithms for DATETIME recognition.

uncertainty-based sampling of candidate substrings for labeling is
superior to random sampling.

6 USER STUDIES
In our framework, a user can invest her effort in coming up with a
regex and/or in manual labeling of the candidate substrings. In this
section, we explore the tradeoffs between the two, assuming a user
is given a limited time budget of T minutes. We ignore the time to
come up with the candidate regex RE0, because it is much easier
to come up with it than to come with a regex REwl that has both
high recall and high precision.

6.1 Experimental Design
To experimentally explore the trade-off between creating a regex
versus manual labeling of the candidate substrings, we collected
data from 4 computer science students with different expertise in
writing regexes. We use capital letters to represent the volunteers
as M, C, J,and A. We asked the volunteers to create a regex for the
DATETIME and COURSENUMBER tasks. For each task, we gave them
1,000 candidate substrings randomly selected from S0. We instructed
the volunteers to use {https://regex101.com} environment to create
and debug regexes. We gave the volunteers 40 minutes to create a
regex for each task. We asked them to submit their intermediate
regex after 5, 10, and 20 minutes of work. Eventually, we obtained
regexes from volunteers C, J, A for both tasks and regexes from
volunteer M for the DATETIME task.

Unlike regex writing, labeling candidate substrings does not
require much, if any expertise. We assume all of the volunteers
are average people and can create string annotations at the same
speed as listed in Table 1. Using those numbers, we are able to
simulate a range of strategies a volunteer may take to help with
the DATETIME and COURSENUMBER tasks within our framework. The
first two strategies are two extremes, while the next 4 strategies
are the trade-offs:

• RegAll. User spends all the time on constructing a regex.
The final entity recognizer is the regex created after 40 min-
utes.

• Label. User immediately starts to annotate candidate strings
selected from S0. NN is trained and fine-tuned using the
labeled candidate substrings selectedwith RandomQuerying,
as described in Section 3.4.

• Reg5. User spends the first 5 minutes on constructing REwl ,
which is used to pretrain anNN onweakly labeled data. Then,
the user spends the remaining 55 minutes for annotating the
candidate substrings selected using Random Querying.

• Reg10. The same as Reg5, but the user spends 10 minutes
to construct REwl and 50 minutes for labeling.

• Reg20. The same as Reg5, but the user spends 20 minutes
to construct REwl and 40 minutes for labeling.

• Reg40. The same as Reg5, but the user spends 40 minutes
to construct REwl and 20 minutes for labeling.

Since there was no time for hyperparameter tuning in our real-
time scenario, we had to select the hyperparameters in advance.
Although it is not completely fair, in our experiments, we fixed all
hyperparameters to a combination that appeared robust on all tasks
in Section 5: lr = 2−7, emsize = 70, nhidden = 125, nlayers = 5.

6.2 Experimental Results
Figure 4 shows the results for volunteer M, who had the most
extensive expertise in writing regexes among our volunteers, on
DATETIME recognition task. The figure shows EntF1 score as a func-
tion of time for the 6 different strategies. The figure allows us
to compare different strategies for several different time budgets
T = [5, 10, 20, 40, 60].

The figure reveals several interesting observations. If the time
budget is only 5 minutes, REwl generated by volunteer M is supe-
rior in accuracy to an NN trained on candidate substrings labeled
within 5 minutes. After 10 minutes, NNs become superior to using
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Table 4: The performance of the 6 strategies under different time budgets of volunteers C, J, and A for DATETIME and COUSENUMBER

recognition. × means not applicable.
Volunteer C on DATETIME Volunteer J on DATETIME Volunteer A on DATETIME

Strategy
Time budget (min) Time budget (min) Time budget (min)

5 10 20 40 60 5 10 20 40 60 5 10 20 40 60
RegAll 0.002 0.412 0.456 0.593 0.593 0.0 0.0 0.001 0.061 0.061 0.002 0.003 0.005 0.011 0.011
Label 0.001 0.006 0.036 0.377 0.648 0.001 0.006 0.036 0.377 0.648 0.001 0.006 0.036 0.377 0.648
Reg5 × 0.0 0.0 0.0 0.0 × 0.0 0.417 0.489 0.597 × 0.0 0.17 0.429 0.614
Reg10 × × 0.33 0.429 0.55 × × 0.066 0.334 0.57 × × 0.038 0.297 0.389
Reg20 × × × 0.383 0.54 × × × 0.271 0.385 × × × 0.261 0.393
Reg40 × × × × 0.626 × × × × 0.232 × × × × 0.416

Strategy Volunteer C on COURSENUMBER Volunteer J on COURSENUMBER Volunteer A on COURSENUMBER

5 10 20 40 60 5 10 20 40 60 5 10 20 40 60
RegAll 0.554 0.592 0.532 0.338 0.338 0.145 0.184 0.19 0.19 0.19 0.563 0.6 0.675 0.702 0.702
Label 0.046 0.361 0.652 0.761 0.815 0.046 0.361 0.652 0.761 0.815 0.046 0.361 0.652 0.761 0.815
Reg5 × 0.591 0.682 0.75 0.796 × 0.433 0.654 0.751 0.795 × 0.571 0.66 0.72 0.777
Reg10 × × 0.679 0.734 0.771 × × 0.611 0.732 0.798 × × 0.651 0.698 0.769
Reg20 × × × 0.733 0.796 × × × 0.684 0.797 × × × 0.681 0.727
Reg40 × × × × 0.707 × × × × 0.681 × × × × 0.699

Figure 4: Time efficiency of volunteer M on DATETIME task.

REwl only. The best trade-off between regex writing and labeling
is achieved by Reg5. It seems that placing an extensive effort in im-
proving REwl does not pay off: the regex created after 5 minutes is
comparable in accuracy to the one created after 40 minutes. Label
is not competitive initially, but after 60 minutes it catches up with
the overall best Reg5.

To examine the generalizability of the conclusions with volun-
teers and different recognition tasks, we repeated the analysis with
volunteer C, J, A on tasks DATETIME and COURSENUMBER in Table 4.

From Table 4 we can see that volunteer C is different from vol-
unteer M. While C’s REwl produced after 5 minutes is not accurate,
there is a steady increase in C’s EntF1 accuracy after 10, 20, and
40 minutes. The observed accuracy after 40 minutes is higher than
that of volunteer M. RegAll is better than the rest until the 50
minute mark is reached. After 50 minutes, the Label becomes more
accurate than any regex-based approach. Reg5 is extremely inaccu-
rate. This is a surprising finding because, unlike Label, we do not
observe any accuracy improvement with the increase in number of
labeled candidate substrings. It seems that the NN pretrained using
REwl created by volunteer C after 5 minutes has properties that
prevent successful fine-tuning with labeled substrings.

Table 4 also shows results for volunteers J andA on task DATETIME.
It can be observed that neither volunteer manages to come up with
a good regex in 40 minutes. Interestingly, the overall behavior of
these 2 volunteers is more similar to volunteer M than to volunteer
C. Reg5 is the best overall in the first 40 minutes. Label becomes
competitive with Reg5 after around 40 minutes. Reg10, 20, 40
show that it does not pay off to spend a large amount of time on
writing and refining REwl .

Table 5 provides an insight into the differences between REwl
produced after 5 minutes by volunteers C, J, and A. None of the vol-
unteers is able to create an accurate REwl . This is expected knowing
that they were exposed to 1,000 strings with 100-character lengths
and asked to write a regex within only 5 minutes. Interestingly,
volunteer C created a very specific regex with precision 1 and very
low recall, while volunteers J and A created regexes with very low
precision and recall. Volunteer C’s REwl had only 34 matches in
S0, which meant that the resulting weakly labeled data set Swl
was extremely imbalanced with virtually all negative labels. We
hypothesize that the high imbalance resulted in a very poorly pre-
trained NN, to the extent that it could not have been improved
by fine-tuning. Unlike volunteer C, although volunteers J and A
were not more successful with regexes, their REwl resulted in a
more balanced weakly labeled data set, that allowed successful
fine-tuning.

Table 4 shows that we obtain comparable results on the
COURSENUMBER task with volunteers C, J, and A. An overall theme
emerges from the user study and can be summarized as:

• If the time budget is less than 40 minutes, it is useful to spend
a few minutes to construct REwl for weak labeling and the
remaining allotted time for labeling.

• If the time budget is over 40 minutes, the weak labeling step
could potentially be skipped and it might be sufficient to
focus all effort on labeling of candidate substrings.

Limitation of our study. Before concluding the section, we
point out that a limitation of our study is that we ignore the time
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Table 5: Regexes created by C, J and A after the first 5 min-
utes for the DATETIME task.

Source Regex and their properties
C \d{4}-\d{1,2}-\d{1,2}T\d{1,2}:\d{1,4}-\

d{1,4}

J ([0-9][0-9][0-9][0-9]|[0-9][0-9])\

/([0-9][0-9]\/[0-9][0-9])

A (Monday|Tuesday|Wednesday|Thursday|

Friday|Saturday|Sunday){0,1}\s*[0-9]{1,2}

No. of matches
in S0

EntPrec EntRecall EntF1

C 34 1.0 0.001 0.001
J 161,299 0.0 0.0 0.0
A 3,795,149 0.001 0.027 0.002

needed to train and fine-tune an NN. Our assumption is that the
training is instantaneous. We use a standard PC with a single
GeForce GTX 1080 Graphics Card in our actual experiments. For
all tasks, excluding DATETIME, pretraining an NN on Swl took in
the range of 20 minutes to an hour, and it took almost 2 hours for
DATETIME. Each round of fine-tuning on all data sets ranged from
2 to 20 minutes. Thus, it appears that the user would waste time
waiting for an NN to be pretrained and fine-tuned. However, this
limitation is not necessarily a fatal flaw of our study due to several
reasons: (1) a user could proceed with manual labeling and regex
construction while waiting for NN training, (2) a user could switch
to some other task while waiting, (3) the training time could be
significantly improved if it were implemented on a more powerful
computer system, (4) our study did not focus on training speedups,
and it is possible that with some tuning the training time could be
further reduced.

7 CONCLUSIONS
We investigated the problem of entity extraction, where entities
follow or closely resemble patterns described using regular expres-
sions. Industrial strength entity recognizers for this class of entities
employ regex. Regex is either manually crafted or learned. Themain
drawbacks of regexes are that they tend to be complex to achieve
high coverage, are difficult to maintain, and are not resilient to
noise, such as typos. In the wake of data deluge, deep learning algo-
rithms are an attractive alternative, but they require large amount
of human annotated data. We propose a framework that combines
the advantages of regexes and deep learning, coupled with weak
supervision and active learning.

We conducted extensive experiments with data from 5 applica-
tion domains: email, course number, phone number, datetime, and
bill date. We also conducted a user study with 4 volunteers. The
experiments showed that we can build ML models that are regex-
oblivious, achieve high accuracy, and are resilient to small noise.
The user study provided interesting insights about the trade-offs
between constructing regexes and manually labeling the unlabeled
text.
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