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Abstract 
 

A novel method for fast extraction of fundamental 

frequency events (FFE) based on measurements of 

frequency and rate of change of frequency by Phasor 

Measurement Units (PMU) is introduced. The method 

is designed to work with exceptionally large historical 

PMU datasets. Statistical analysis was used to extract 

the features and train Random Forest and Catboost 

classifiers. The method is capable of fast extraction of 

FFE from a historical dataset containing 

measurements from hundreds of PMUs captured over 

multiple years. The reported accuracy of the best 

algorithm for classification expressed as Area Under 

the receiver operating Characteristic curve reaches 

0.98, which was obtained in out-of-sample evaluations 

on 109 system-wide events over 2 years observed at 43 

PMUs. Then Minimum Volume Enclosing Ellipsoid 

Algorithm was used to further analyze the events. 

93.72% events were correctly characterized, where 

average duration of the event as seen by the PMU was 

9.93 sec.1 

 

 

1. Introduction  

 
Instantaneous fundamental frequency and the Rate 

Of Change Of Frequency (ROCOF) are the main 

indicators of overall balance between the supply and 

demand and the changes in such balance [1]. There are 

multiple types of frequency related events, including 

presence of harmonics and sub-harmonics, low 

frequency oscillations, and fundamental frequency 

deviations [2]. This paper focuses on detection and 

duration of the fundamental frequency deviation 

events using PMU measurements.   

Utilities have different practices for the 

fundamental frequency monitoring. Every utility sets 

the thresholds that when exceeded indicate a 

frequency event. One example can be found in [3] 
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where the statistical analysis is performed to evaluate 

the occurrences of frequency events in Great Britain 

over different periods of the year with predetermined 

fundamental frequency threshold set by the utility. 

Various types of frequency events were analyzed, and 

the disturbance classification was implemented based 

on wavelet multiresolution analysis and pattern 

recognition techniques in [4]. Several studies used 

Principal Component Analysis to reduce the 

dimensionality of the PMU dataset [5, 6]. The 

reduction in dimensionality helps handling large PMU 

datasets by removing the need to execute the detection 

on PMUs that are not affected by the event, which is 

useful for faults that may only be visible by a small 

portion of PMUs. Fundamental frequency events are 

system wide events and, in most cases, the changes in 

the signal can be detected by every PMU. Exceptions 

are some smaller intensity events where the change in 

the signal cannot be differentiated by some PMUs due 

to the algorithm inability to differentiate very small 

signal changes. . Hence, in the analysis of system-wide 

events it is beneficial to consider the complete set of 

measurements from all PMUs. Minimum Volume 

Enclosing Ellipsoid method was proposed to classify 

the types of events based on PMU measurements [7-

9]. This method demonstrates promising capabilities 

in event detection and classification, but it was only 

tested on data from a few PMUs and for a limited 

number of events. 

Our contribution in this paper is in enabling a fast 

extraction of frequency events from an extremely large 

dataset. To enable fast execution and accurate 

characterization of frequency events, we implement a 

two-step method. First, we execute a fast frequency 

event detection extracting 20 min windows of signals 

that contain frequency events. In this step statistical 

analysis is performed to collect a set of features that 

are then used to train two different classifiers: Random 

Forest, and CatBoost classifier. In the second step we 

implement a slower but more precise event duration 

characterization method based on Minimum Volume 
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Enclosing Ellipsoid that can specify the exact start and 

end time of the event recorded by the PMU data. 

2. Background  
 

In the AC electrical power systems, the voltages 

and currents can be represented as periodic functions: 
 

𝑥(𝑡) = 𝑋𝑚(𝑡) cos(2𝜋𝑓𝑡 + 𝜑) + 𝐷(𝑡)            (1) 
 

where t is time, 𝑋𝑚(𝑡) is peak magnitude, 𝑓 is 

fundamental frequency, 𝜑 is phase angle, and 𝐷(𝑡) are 

disturbance signals, such as noise, harmonics, DC 

offset, inter-harmonic interference, etc.  

The frequency is normally maintained within a 

small deviation from a nominal frequency (50 or 60 

Hz). The instantaneous frequency of the power system 

is constantly changing with slight deviations from the 

nominal frequency.  

The ROCOF is defined as the first derivative of 

instantaneous frequency, or a second derivative of the 

phase [10].  
 

2.1. Fundamental Frequency Events  

Small deviation of fundamental frequency occurs 

regularly in AC electric power systems, due to the 

mismatch between electricity supply and demand. To 

maintain normal operation, thresholds to detect small 

frequency deviation are set to alarm unacceptable 

operating conditions. The major deviation of system 

frequency from its nominal value can occur due to 

different contingencies in the system such as faults, 

sudden load increase or decrease, sudden loss of a 

generator, etc. Not all the faults will lead to frequency 

events (FE). The FE may occur when clearing the fault 

leads to system unbalance between supply and 

demand, such as during generator tripping, system 

islanding, loss of major load, etc.  

The fundamental FE refers to situations when the 

frequency of the system exceeds the preset operational 

limits for normal operation [1]. To separate the normal 

fluctuations of frequency from contingency situations, 

electric power system operators set the limits that 

should not be crossed in normal operation. For 

example, in [11] unacceptable frequency conditions 

are defined as any situation in which steady state 

frequency falls outside of the statutory limits of +/-0.5 

Hz relative to nominal frequency. In [11], the 

deviations outside of +/-0.5 Hz limits are rare, and 

only occur in case of severe events. Another example 

is ERCOT that has a larger deviation of fundamental 

frequency in the normal operation range. According to 

[12] any fundamental frequency between 59.97 Hz 

and 60.03 Hz is considered normal operation. We can 

see that in this case the smaller deviation (up to 0.03 

Hz) is considered normal, as opposed to a previous 

example where it is set to 0.5 Hz. 

The fundamental FE are system-wide events, that 

should be seen from all the PMUs connected to the 

affected power network. Thus, it is beneficial to 

observe these events from the recording available from 

multiple PMUs in the network because it makes the 

method robust in case of missing and bad data.  
 

2.2. PMU Data 

PMU is a measuring device that calculates 

estimated phasors of the sinusoidal voltage and current 

signal as described in Eq. (1). The voltage and current 

phasors are sent to the Phasor Data Concentrator 

(PDC) at the sampling rate of 30-120 samples per 

second (sps) depending on the device. Some PMUs 

record only positive sequence voltage and current, 

while some report the phasors for all three phases 

depending on the device setup.  

PMUs also calculate power system fundamental 

frequency and ROCOF in addition to synchrophasors. 

The fundamental frequency and ROCOF are 

calculated and reported at the same sampling rate as 

synchrophasors. The fundamental frequency and the 

ROCOF measurements produced by PMUs should 

meet the accuracy and dynamic performance 

requirements specified by IEEE/IEC 60255-118-1 

standard (the latest synchrophasor standard which 

superseded the IEEE C37.118.1-2011) [10]. 
 

2.3 Big Data and Apache Spark 

In this paper we describe a method for frequency 

event detection and characterization that can be 

applied on an exceptionally large set of PMU 

measurements of dozens of Terabytes (TB). When 

dealing with such a large dataset it is necessary to use 

the tools that can store, retrieve, and process large sets 

of data in a distributed database. For that purpose, the 

data was stored as an Apache Parquet database, and 

Apache Spark is used to access and analyze the data.  

The benefits of using compressed Apache Parquet 

files are presented in Table I [13]. We can see from the 

Table I that the parquet format provides a large 

compression rate and ensures a much smaller query 

run time, compared to the conventional tables stored 

as CSV files. Apache Spark provides multiple 

functionalities necessary for processing of the large 

Table I. Comparison of Parquet and CSV files [13] 

Dataset 

Size on Amazon 

S3 

Query Run 

Time 

Data stored as 

CSV files 
1 TB 236 seconds 

Data stored in 

Apache Parquet 

Format 

130 GB 6.78 seconds 

Savings 87% less 34x faster 
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distributed datasets, including Spark SQL, Spark 

Streaming, Spark MLlib for machine learning, and 

GraphX for graph analysis. 
3. Methodology  
 

We will first describe the dataset used for the 

study, as well as the steps taken to preprocess it. Then, 

we will describe the steps taken to implement a Fast 

Frequency Event Detection method based on 

statistical analysis of 20-min windows of FFE using 

different machine learning algorithms. The 20 min 

window was selected for the reasons of computational 

efficiency. After that we will describe the frequency 

event characterization method based on Minimum 

Volume Enclosing Ellipsoid used to further analyze 

properties of fundamental FFE.  

The reasons for using two methods to fully 

characterize the fundamental FFE are: 

• Fast Frequency Event Detection is created to 

enable a fast execution on a large dataset. This 

method is very time efficient, but only provides 

limited differentiation of the types of frequency 

event. The method indicates a presence of 

fundamental frequency event inside a 20-min 

window, but it does not provide any additional 

event information. 

• Frequency Event Characterization is a slower 

method that provides more precise 

characterization of FFE as seen by the PMUs. 

Because it is not time efficient, this method is 

only executed on a subset of data extracted by the 

Fast Frequency Event Detection. Executing this 

method on the entire dataset is not feasible, since 

the execution time would take multiple months 

even if using high-performance computing 

resources. Executing this method on a smaller 

PMU dataset gives more precise event 

characterization in reasonable time.  
 

3.1. Data Description and Preprocessing 

Datasets used for the study reported in this paper 

include:  

• Synchrophasor measurements collected from 43 

PMUs for the period of 2 years. Total size of the 

dataset is 5.35 TB. Data is stored as an Apache 

Parquet database 

• Historical event logs for the same period of two 

years stored as a CSV file. The event logs have 

imprecise timestamps for the event start/stop 

times 
 

3.1.1. Data Ingestion. Data ingestion is the process of 

extracting data to the computational platform from 

original data source. It can be thought of as 

“importing” of the data into the cluster. The data in the 

format of Apache Parquet files was copied to the High-

Performance Cluster, and then was ingested by 

Apache Spark for further processing. The structure of 

the data was embedded into folders based on the time 

the data was collected. In such a way, one folder would 

include data for one day of measurements for all 

PMUs. 
 

3.1.2. Data Cleansing. Data cleansing identifies 

“bad” and corrupted data, which would have little or 

none value for the further analyses and thus is being 

removed from dataset. The recordings from PMUs that 

contained less than 50% of the useful signals were 

removed from the dataset. 
 

3.1.3. Data Curation. Data curation is associated with 

managing, transforming, and organizing the data in a 

way that is useful for the discovery of points of 

interest, i.e. finding events in the given dataset. The 

timestamps for the recordings from PMUs were all 

changed to the same timestamp format and were 

transferred to the same time zone. Before proceeding 

to the algorithmic part of the analyses one needs to 

determine if data needs to be sorted by time. For the 

first proposed step data does not need sorting, which 

allows for faster processing. For the second step of the 

method, the data needs to be sorted. It is also worth 

mentioning that one needs to sort data by the 

occurrence time for the purpose of plotting. 
 

3.1.4. Data Quality. The PMU dataset has multiple 

data quality issues, including violations of data 

accuracy, data availability, and data timeliness [14]. 

More about data quality issues of PMU data can be 

found in [15]. In terms of data accuracy, bad data 

outliers are present in the data. It is important to 

separate these from the actual events in the network. 

When it comes to data availability, the dataset has 

multiple types of missing values, including missing 

timesteps, and missing measurements for the existing 

timesteps. The issues with the reported sample time 

were also detected, which indicates an existing 

violations of data timeliness.  The frequency event 

characterization method developed in this paper can 

detect several types of data quality issues including 

missing measurements and outliers. The method is 

trained to skip the sections of data that are of 

unacceptable quality. If majority of the data points in 

a time window was missing  or outliers were detected, 

the data window gets discarded. The algorithm raises 

a flag and proceed with further processing of the 

dataset. In our example, if at least 4 points of valid data 

are present in the data window, the algorithm keeps  

calculating the MVEE.  
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3.2. Fast Frequency Event Detection  
The purpose of Fast Frequency Event Detection 

Module is to quickly locate FFE inside the large PMU 

dataset by sliding a 20-min window and collecting a 

set of statistical characteristics. A training set was 

selected, and different classifiers were used to separate 

between the FFE and normal operation. The historical 

event logs are used to extract two sets of time 

windows:  

• 297 20-minutes long time windows (+/-10 min 

from the reported start of the event) around the 

frequency event instances reported in the event 

log as time stamps. 

• 244 randomly selected 20-minutes long time 

windows during normal operation, taken from the 

periods when no event was reported in the event 

logs.  

Then, these time windows were used to extract the data 

from the PMU database. Two measurements were 

selected from the PMU database: frequency and 

ROCOF. 
 

3.2.1. Threshold selection. The detection method 

uses a set of predefined thresholds to collect the 

statistical characteristics of selected time windows of 

PMU data. The selection of different thresholds as 

statistical characteristics is demonstrated in Fig. 1 for 

frequency measurements, and Fig. 2. for ROCOF 

measurements.  
 

3.2.2. Feature Extraction. Next step is the extraction 

of features based on statistical analysis of collected 

threshold tests on the selected dataset. For each 20 min 

time window, the following steps are taken for each of 

the 43 PMUs: 

• Check the threshold violation for each timestep. 

• Count the number of points beyond each 

threshold (total of 14 features, one for every 

frequency and ROCOF threshold). 

• Extract minimum value of frequency and ROCOF 

(2 features minF, minDF) 

• Extract maximum values of frequency and 

ROCOF (2 features maxF, maxDF) 

• Generate a table with all the extracted features. 

Dimension of the table is 43 x 18, because there 

is 43 PMUs and total of 18 extracted features.  

It is worth mentioning some physical aspect of the 

measurement points that lay beyond the thereshold 

selection. They are proportional to the area of the 

analyzed signal above a specific threshold. For 

example, one can think about the area between the 

threshold and a frequency signal as an exessive 

energy, generated by the sources and not consumed by 

loads nor attributed to the losses in the system. Instead, 

this exsessive energy was spent on generators’ 

acceleration that led to frequency increase. Similarly, 

if the measured signal was below the lower thresholds, 

the collected measurement points are proportional to 

the area of the signal under the specified threshold. In 

this case the generators are not producing enough 

energy to cover the increase in load that is casuing the 

frequency to fall under the acceptable value.  
 

3.2.3. Construction of the inputs for classification. 

After the extraction all the features, they were 

combined into the input table used for the 

classification algorithm. The diagram of the process is 

shown in Fig. 3. 

First, each table generated for a single time window 

is flattened into a vector containing 756 elements: 

43 PMUs x 18 features = event vector [756] 

The features for a single PMU for a given 20-minutes 

window are as follows: 

• # of frequency measurements above 60.5 Hz 

• # of frequency measurements above 60.2 Hz 

• # of frequency measurements above 60.1 Hz 

• # of frequency measurements above 60.05 Hz 

• # of frequency measurements below 59.95 Hz 

• # of frequency measurements below 59.9 Hz 

• # of frequency measurements below 59.8 Hz 

• # of frequency measurements below 59.5 Hz 

• # of ROCOF measurements above 1.5 Hz/sec 

• # of ROCOF measurements above 1.0 Hz/sec 

• # of ROCOF measurements above 0.5 Hz/sec 

• # of ROCOF measurements below - 0.5 Hz/sec 

• # of ROCOF measurements below - 1.0 Hz/sec 

• # of ROCOF measurements below - 1.5 Hz/sec 

• Minimum frequency measurement value 

• Maximum frequency measurement value 

• Minimum ROCOF measurement value 

• Maximum ROCOF measurement value 

Then the labels are created for each time window as: 

• 1 – in case of a reported frequency event 

• 0 – otherwise 

The final training dataset contains following tables: 

• X: [297+244] x [756]  

• Y: [297+244]  

The resulting table was analyzed by two different 

algorithms. The split of the data into training and 

testing set was performed randomly with Stratified K-

Folds cross-validation with 5 folds.  
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3.2.4. Random Forest Classifier. The first tested 

algorithm is Random Forest Classifier implemented in 

sklearn library (version 0.22.1) for Python where 

default parameters were utilized.  

Random Forest is an ensemble algorithm [16]. It 

consists of multiple classification decision trees. So, 

each new event is classified separately by each of the 

decision trees where each tree puts the event in one of 

the two classes: NO or FFE. In other words, each tree 

“votes” on the event. The final verdict on the class is 

selected based on maximum votes [17]. The number 

of trees in the forest and how deep the trees are 

reflecting hyperparameters should be chosen for each 

specific problem.  
 

3.2.5. Catboost Algorithm. The second tested 

algorithm is Catboost, which is an algorithm for 

gradient boosting based on decision trees [18, 19]. 

Gradient boosting algorithms belong to the family of 

ensemble algorithms and use weak classifiers in 

sequential manner to create strong classifier. A 

gradient boosting algorithm aims at achieving 

minimum error on the training dataset in a functional 

space where each function is a model. Every model in 

this composition assesses a gradient of the error for 

elements in a feature space. Predictions are added 

together using some weights to arrive to the final 

classification [20]. 

The following parameters were used for training: 

•     max iterations: 1000, 

•     learning rate: 0.01, 

•     early stopping rounds: 300, 

•     evaluation metric: AUC, 

•     tree depth: 8  
 

3.3. Frequency Event Characterization 

Fast frequency event detection method described in 

the previous section 3.2 is used to select 20 min 

windows of PMU data that contain a frequency event. 

Using this method, 446 20-min windows with FFE 

were selected. The next step is to further characterize 

these FFE by determining the exact time window in 

which the event is visible by the PMU and offset of 

that window from the reported event time (provided in 

the event log as time stamp). For that purpose, the 

event detection method was implemented based on the 

Minimum Volume Enclosing Ellipsoid (MVEE) 

method [7-9, 21-23]. MVEE incorporates all available 

PMUs, thus capturing the exact duration of the event 

across the system. The threshold method  only detects 

 
Figure 1. Frequency thresholds 

 

 
Figure 2. ROCOF thresholds 
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measurement points when signal is over the threshold. 

The MVEE method  can capture the entire length of 

the signal that deviates from the normal operation. 

That is useful for further characterization of such 

events, such as creating a distinct “portrait” of the 

event.  
 

3.3.1. Minimum Volume Enclosing Ellipsoid. For a 

set of points in n-dimensional space, the MVEE is 

defined as the smallest possible n-dimensional 

ellipsoid that completely encloses all the points [7-9, 

21-23]. as demonstrated in Fig. 4. The solution to the 

MVEE problem was implemented in Python based on 

the solution described in [21, 22].  

The ellipsoid can be expressed in the center form as: 

𝜀 = {𝑥 ∈ ℝ𝑛|(𝑥 − 𝑐)𝑇𝐸(𝑥 − 𝑐) ≤ 1}             (2) 

where c is the center of the ellipsoid, and E is a d x d 

matrix for an ellipsoid in d-dimensional space. For 

example, if we are creating an ellipsoid in a 2-

dimensional space, the matrix E would be 2x2. The 

point xi is inside of the ellipsoid if: 

(𝑥𝑖 − 𝑐)𝑇𝐸(𝑥𝑖 − 𝑐) ≤ 1                       (3) 

Set of points that we are trying to enclose can be 

expressed as a matrix P of the size (d x n), where n is 

a number of points. 

The MVEE can be found by solving the 

optimization problem: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 log(det(𝐸))                     (4) 

subject to: 

(𝑃𝑖 − 𝑐)′ ∗ 𝐸 ∗ (𝑃𝑖 − 𝑐) ≤ 1                  (5) 

where Pi is the i-th column of the matrix P [11]. The 

solver is based on Khachiyan Algorithm [23]. 

After E and c are calculated, the volume of the 

MVEE can be calculated using Eq. (6): 

𝑉𝑜𝑙 =
𝜋

𝑑
2

𝚪(
𝑑+2

2
)

𝑑𝑒𝑡(𝐸−1)
1

2                       (6) 

where Γ is the standard Gamma function of calculus. 

3.3.2. Frequency Event Detection based on MVEE. 

In this step the set of PMU measurements is enclosed 

in MVEE, and difference in MVEE Volume between 

normal operation and frequency event is used to detect 

the frequency event changes visible by the PMU. The 

change in PMU data samples have impact on the 

volume of MVEE [7-9]. During the normal operation, 

the volume is small, while every deviation from 

normal operation present in any of the input 

parameters will increase the volume of the MVEE, 

making it easy to detect.  

The overview of the method is presented in Fig. 5. 

Each PMU measurement data stream is analyzed 

separately. The dimension d of MVEE is 4, as it takes 

four measurements, positive sequence voltage 

magnitude Vpm, positive sequence current magnitude 

Ipm, frequency f, and ROCOF df/dt. Number of points 

in each MVEE window varies based on the sampling 

rate and selected MVEE window size. Number of 

points must be larger than the selected MVEE 

dimension, otherwise the MVEE matrix is singular.  

Two levels of processing using MVEE were 

implemented:  

Level 1. 10-sec MVEE window  

Level 2. 1-sec MVEE window  

The reason for having two levels of window sizes is 

that the 20-min event window contains a large percent 

of normal operation cases. It is very time consuming 

executing a small 1-sec window over the 20-min 

event, and not necessary. We first use a larger 10-sec 

MVEE window to get rid of large chunks of data with 

normal operation. Then when we select a smaller 

subset of data that covers the frequency event. We use 

a smaller 1-sec MVEE window to get a more precise 

information about the frequency event. This way we 

only use a small 1-sec MVEE window over the subset 

 
Figure 3. Diagram of the Fast Frequency Event 

Detection Module 

 
Figure 4. Minimum Volume Enclosing Ellipsoid 
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of data that has the most information about the 

frequency event.  

The goal of the first level is to find the 30-sec 

window that completely encloses the event, using a 

10-sec sliding MVEE window with a step of 10-sec. 

The 10-sec sliding MVEE window is executed over a 

20-min event window determined using Fast 

Frequency Event Detection method from Section 3.2. 

In this case one sliding MVEE window is a 4 x 300 

matrix for PMUs with 30 sps, and 4 x 600 matrix for 

the ones with 60 sps.  

During the Level 1, the 10-sec window with 

maximum calculated MVEE Volume, out of all 20-

min of data, is selected as the center of the event. In 

some cases, we discovered multiple events during the 

20 min window. These events were separated 

manually into 30 sec windows. The development of 

automated way to separate them is left for future 

work. If multiple events occurred during one 30 sec 

window they are marked as overlapping events. Two 

10-sec windows around this center (one before and 

one after) are also taken to form a 30-sec window of 

the event. This 30-sec window of the event is then 

sent to the Level 2 of MVEE processing.  

The purpose of the Level 2 is to find the precise 

start and end time of the frequency event as seen by 

the PMU, using a smaller 1-sec MVEE window (with 

0.5-sec steps between two consecutive MVEE 

windows). The 1-sec MVEE window slides over the 

30-sec event window determined during the Level 1. 

In this case one sliding MVEE window is a 4 x 30 

matrix for 30 sps, and 4 x 60 matrix for 60 sps PMUs.  

During level 2, it is necessary to determine the 

MVEE volume threshold between a normal operation 

and frequency event. The subset of 30-sec events was 

selected and visually inspected to determine the 

visible extent of the frequency event from the PMU 

measurements. This was used to create labels for each 

1 second of data (label = 1 for frequency event, label 

= 0 for normal operation). The MVEE volume was 

calculated for this subset of data. Then the histogram 

was used to determine the MVEE volume threshold 

between the frequency event and normal operation for 

a 1-sec MVEE window for each individual PMU.   

After we have obtained all the thresholds, we can 

use them to select the 1-sec MVEE windows that are 

over the threshold. The FFE as visible by the PMU 

typically span over a few seconds. All the 1-sec 

MVEE windows that are over a threshold for a certain 

event on a certain PMU are grouped together to form 

a final event window.  

The event log contains the information about the 

start of the FFE. We use this information to calculate 

the offset between the start of the frequency event that 
 

Figure 5. Two step processing in the Frequency Event 

Characterization Module 
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was provided in the event log, and our calculated start 

of the event based on PMU measurements.  

The output of the FFE characterization module is: a) 

start of the frequency event as seen by the PMU, b) 

end of the frequency event as seen by the PMU, and c) 

offset between the start time from the event log and 

our calculated Event Start. 
 

4. Evaluation 
 

The model was implemented on the High-

Performance Computing cluster at Texas A&M 

University with 28 cores, and 64 G of memory. The 

extraction of features took the longest time compared 

to other tasks and was completed in about 3 hours. 
 

4.1. Evaluation metrics 

Two classifiers were used to characterize datasets, 

and then a better performing classifier was chosen. 

The Confusion Matrices (CM), Receiver Operating 

Curves (ROC) and Precision Recall Curves (PRC) 

[24] were applied for results evaluation for each 

algorithm. ROC shows performance of a classifier as 

its threshold are changed. PRC depicts what 

combination of precision and recall can be achieved 

with different thresholds. F-1 score is the harmonic 

mean of the precision and recall. Table II is composed 

of the three metrics for each algorithm: Area Under the 

ROC (ROC AUC), Area Under the PRC (PRC AUC) 

and F-1 score. 
 

4.2. Fast Frequency Event Detection Performance 

Random Forest performed well as can be seen from 

Table II. CM for one of the K-folds for this algorithm 

is depicted in Table III One may see that algorithm is 

placing majority of Normal Operation events and FFE 

in the right classes. ROC and PRC are shown in blue 

color on the Fig. 8 and Fig. 9 respectively. 

Catboost produced best results among tested 

classifiers. Table II contains metric outcomes for this 

algorithm. CM for Catboost is presented on Table IV 

The improvement from the previous algorithm is seen 

in lower number of false negatives for the Catboost. 

Yellow lines on Fig. 6 and Fig. 7 represent AUC and 

PRC for the algorithm. 

Catboost allows out-of-the box feature importance 

evaluation. The most important features are: 

• Minimum value of frequency and ROCOF  

• Maximum values of frequency and ROCOF  

If one is to construct a dataset consisting only of 

above-mentioned 4 features for each PMU, resulting 

in total of 43x4 = 172 features for each 20-minute 

window, then up to 93% of the final scores could be 

obtained. That leads to the conclusion that if the 

computation time for the big dataset is an essential 

point, then the fast results can be obtained with usage 

of only 4 features per PMU. This is what makes a 

proposed algorithm so fast in analyzing big datasets.  
 

4.3. Frequency Event Characterization Results 

Based on the Level 1 of the MVEE using 10-sec 

sliding window, majority of FFE were precisely 

characterized. Table V presents the main categories of 

events encountered during the Level 1 processing 

stage. Regular event is any frequency event that does 

not overlap with another frequency event. Overlapping 

events are the ones that share 30 sec time window. As 

we can see from the Table V:  

• 382 FFE exactly coincide with the event log, and 

are shorter than 30 sec.  

• 29 FFE have a starting time that exactly coincides 

with the event log, and are longer than 30 sec. The 

end time was not available in the event logs for 

any of the 446 events analyzed.  

• 22 FFE were wrongly detected at the times when 

they did not occur. The reason for this is the 

MVEE detected another event (not the frequency 

event) inside the same 20-min window. The 

detected event had a stronger signature (MVEE 

volume) than the frequency event inside the same 

window, which made the algorithm to pick it up. 

One possible solution for this problem is 

removing the other types of the events from the 

dataset before the analysis of the FFE. This is left 

for the future work.  

• 13 FFE were overlapping with each other. We 

analyzed the performance of the algorithm on 

them separately. Out of the 13 overlapping 

events, 7 (53.85%) were successfully detected 

and coincided with the event log (4 shorter than 

Table II. Metrics 

  ROC AUC PRC AUC F1 score 

Random Forest 0.973 0.981 0.932 

Catboost 0.979 0.985 0.942 

 

 Table III. Confusion matrix for Random Forest 

Random Forest CM Predicted label 

FFE NO 

True label FFE 41 5 

NO 4 59 
 

Table IV. Confusion matrix for Catboost 

Catboost CM 
Predicted label 

FFE NO 

True label 
FFE 44 2 

NO 4 59 
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30 sec, and 3 longer than 30 sec), 6 events 

(46.15%) were not detected correctly due to their 

MVEE volume being smaller than for the other 

frequency event within the same data window.  

For the events that are longer than 30 sec the start 

and end time was obtained directly from the level 1 

results. All the events that were detected as being 

shorter than 30 sec are sent to the second level of 

MVEE analysis that uses a 1-sec MVEE window to 

analyze the selected 30-sec window of data.  

Table VI presents the calculated minimum, 

maximum, and average duration of FFE that are sub 

30-sec long obtained using Level 2 MVEE.  
 

5. Conclusions 
 

This paper presents a multi-level procedure for fast 

and accurate detection and characterization of FFE 

using PMU measurements. Following are the 

contributions of this paper: 

• Fast Frequency Event Detection based on 

statistical analysis has been implemented. The 

method is capable of fast extraction of 20-min 

event windows containing FFE selected out of the 

large dataset of PMU measurements. The method 

can be used online to quickly detect FFE. Two 

machine learning techniques have been used to 

separate FFE from NO: Random Forest Classifier 

and CatBoost Classifier. CatBoost demonstrated 

the best performance with ROC AUC of 0.979. 

• Frequency Event Duration based on Minimum 

Volume Enclosing Ellipsoid was implemented for 

precise characterization of fundamental FFE as 

seen from the PMU measurement data. The 

method determines the start and end of a 

frequency event as seen by the PMU. Using this 

method, a set of frequency event signals can be 

extracted to be used for further classification of 

the FFE recorded by PMUs. 
 

Disclaimer 
 

This report was prepared as an account of work 

sponsored by an agency of the United States 

Government.  Neither the United States Government 

nor any agency thereof, nor any of their employees, 

makes any warranty, express or implied, or assumes 

any legal liability or responsibility for the accuracy, 

 
Figure 6. Receiver-Operating Curves 

 
Figure 7. Precision-Recall Curves 

Table V. Level 1 of Event Characterization using 

10-sec MVEE window – distribution of events 

based on detection outcome 

 Category Duration Number of 

Events 

(regular + 

overlapping) 

% of 

Total 

Events 

Event 

detected 

correctly 

< 30 sec 382 + 4 
93.72% 

> 30 sec 29 + 3 

Event not 

detected 

correctly 

- 22 + 6 6.28% 

 

Table VI. Level 2 of Event Characterization using 

1-sec MVEE window – frequency event duration 

statistics for sub 30-sec events 

Min Max Average 

0.5 sec 22 sec 9.93 sec 
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completeness, or usefulness of any information, 

apparatus, product, or process disclosed, or represents 

that its use would not infringe privately owned rights.  

Reference herein to any specific commercial product, 

process, or service by trade name, trademark, 

manufacturer, or otherwise does not necessarily 

constitute or imply its endorsement, recommendation, 

or favoring by the United States Government or any 

agency thereof.  The views and opinions of authors 

expressed herein do not necessarily state or reflect 

those of the United States Government or any agency 

thereof. 
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