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Abstract—Most of the natural systems encountered in all kinds
of disciplines consist of a set of elementary units connected
by relationships of different kinds. These complex systems are
commonly described in terms of networks, where nodes represent
the entities and links represent their interactions. As multiple
types of distinct interactions are often observed, these systems are
described as multiplex networks where the different types of in-
teractions between the nodes constitute the different layers of the
network. The ever-increasing size of these networks introduces
new computational challenges and is therefore imperative to be
able to eliminate the redundant or irrelevant edges of a network
and create a summary that maintains the intrinsic properties
of the original network, with respect to the overall structure of
the system. In this work, we present a summarization technique
for multiplex networks designed to maintain the structural
characteristics of such complex systems by utilizing the intrinsic
multiplex structure of the network and taking into consideration
the inter-connectivity of the various graph layers. We validate
our approach on real-world systems from different domains and
show that our approach allows for the creation of more compact
summaries, with minimum change of the structure evaluation
measures, when compared to baseline methods that aggregate
contributions of multiple types of interactions.

I. INTRODUCTION

Complex network theory has been well established as one of
the main tools for understanding and analyzing the behavior of
the natural systems that surround us. Most of these systems
can be seen as a collection of entities interacting with each
other and can be represented as complex networks, whose
nodes (entities) are connected through edges (interactions). As
network theory evolves, it becomes more apparent that these
complex systems are commonly composed of multiple types
of interactions, each carrying a different piece of information.
For example, in social sciences, individuals may be connected
by family, friendship, or professional ties, in biological sci-
ences, proteins are commonly connected via different types
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of genetic and physical interactions. Such complex systems
are represented in the form of multiplex networks, where each
layer represents a different type of interaction among nodes. In
addition to the interactions among the nodes of the networks,
these systems also present correlations among the various
types of interactions. These correlations are represented by the
intrinsic structure of the network and are seen as associations
of the various layers of the graph. For example, in social
sciences, a network with a large overlap between two layers
that represent two distinct types of people interactions i.e.
friendship and professional ties might indicate that there is
an interconnection between the two in the given network.

Mathematically, a Multiplex Network G with L layers
can be seen as a collection of L single-layer networks:
G = {Ga|a ∈ {1, ..., L}}. Each of these networks has a set
of edges, and they all share the same set of nodes. Then:
Ga = {N,Ea,Wa} , where N is the common set of nodes,
Ea is the set of edges of layer a or the intralayer connections
of layer a, and Wa is the set of weights of the corresponding
edges, representing the connection strengths. In multiplex
networks, the only possible type of interlayer connection is
the one in which a given node is connected to its counterpart
node in the remaining layers.

As the focus on the study of complex systems is continu-
ously growing, graph summarization techniques become more
crucial, offering significant benefits [1, 2]. These techniques
can facilitate the observation of patterns otherwise hidden in
the underlying data, by producing an overview of the social
network that can be used for visualization. A summary of the
graph can be handled easier and more efficiently and if the
quality of the summarization is high, it carries most of the
information on the original graph. Additionally, in cases of
very large networks where query processing and data mining
algorithms can be very inefficient, graph summarization, can
enable the execution of complex analysis techniques [3].

There is no doubt that network summarization benefits the
study of large graphs, eliminating some of the redundant
information that they may carry. The question that arises
is how to condense these graphs while retaining as much
detail as possible about the whole system. For single-layer
networks, a plethora of graph summarization techniques have
been published, each using a different approach and having
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Fig. 1. Sample network summarization: The left side graph depicts a sample multiplex network of two layers that is summarized using the proposed approach.
In the middle graph, the supernode represents all the nodes included in it and is connected via superedges to the rest of the graph. Each superedge represents
all possible edges between the adjacent node and the nodes of the supernode. The right side graph is the multiplex network produced by unfolding the graph
summary i.e. extracting the nodes from the supernode and assigning to them edges whose weights are determined by the weight of the superedge.

different sets of goals (i.e. compression, visualization, use with
predictive algorithms) [1]. For multiplex networks, however,
the summarization problem becomes more complicated, as the
intrinsic structure of the layers carries additional information.
So far, layers aggregation is used as a means of reducing the
size of such networks [4]. This approach is most effective
when some interaction layers are redundant or uninformative.
However, if the various layers have minimum overlap, layer
aggregation results in loss of information. The problem of
the exact structural equivalence of graphs is also studied
mainly by methods focused on identifying subgraphs within
a network [5]. However, such methods are not easily im-
plemented as network summarization techniques due to their
high computational complexity. Another similar problem is
that of graph clustering or partitioning [6] aiming to find
collections of strongly related nodes, grouping them based on
their direct connections. In contrast, graph compression aims
at the reduction of the size of the graph and nodes are grouped
based on the similarity of their relationships to other nodes.

In this work, we propose a method for complex network
summarization focusing on multiplex networks of weighted
and undirected networks, although, the method could be
adjusted to work with directed networks as well. It is a sum-
marization method based on iterative node-grouping, where
nodes are grouped into supernodes, connected via superedges.
While previously published methods may be extended for use
with multiplex networks [7], these extensions aggregate or
average the contributions of the different graph layers. On
the contrary, our method aims to reduce the graph size by
utilizing the intrinsic structure of the network and taking into
consideration the inter-connectivity of the various graph layers
when selecting the nodes to merged.

Our results indicate that this approach generates graph
summaries of smaller size, while maintaining the informa-
tive content. In previous studies, the evaluation was either
theoretical, such as finding the most economical description
while avoiding maximum redundancy [8] or application and
methodology specific [9, 10, 11]. In a different work, the
graph summary was evaluated based on its distance from the
original graph [7]. However, these approaches do not take into
account the graph’s structural properties that also need to be
maintained. Therefore, we use a three-fold evaluation, utilizing
a variety of well-established measures of graph comparison,
applying data mining techniques to verify that important
structural aspects are maintained and using a collection of
structural descriptors that when merged can synthesize a very

informative graph structure comparison. Finally, we test our
procedure on real-world networks of different domains.

II. METHODS

The proposed summarization method for weighted and undi-
rected multiplex networks implements an aggregation-based
technique where similar nodes are grouped to supernodes and
edges are grouped to superedges. A supernode then represents
all the nodes included in it and a superedge represents all
possible edges between all pairs of nodes in the adjacent
supernodes. In the compressed graph, self-edges are also
incorporated representing self-edges of nodes in the original
graph or edges among different nodes in the supernode.

In every step of our iterative approach two nodes are
first chosen for merging. Then both nodes are replaced by
a new supernode, and their adjacent edges in each layer are
aggregated and represented by superedges whose weights are
calculated as the mean weight of all the edges they represent.
An example of such a step is shown in Figure 1. Once this
iteration is completed the process is repeated on a newly
formed graph, to find the next pair of nodes to be merged
(Algorithm 1).

Algorithm 1

1: procedure Create Graph Summary
2: Input : G = {Ga|a ∈ 1, ..., L}
3: while There are nodes to be merged do
4: Choose the two nodes to be merged
5: Merge the two nodes
6: Update Mapping of nodes
7: Update the Correction list
8: Recalculate benefits of merging

return
9: end while

10: Output : For each step: SummarisedGraph,
11: Node Mapping, Corrections List

1

A key concept of the method is the ability to choose in every
step, the two nodes that have the most similar connectivity
patterns. In a social sciences domain, for example, we would
choose two people with multiple common acquaintances (high
structural equivalence) and not people with similar attribute
values. A mathematical measure that quantifies this idea, takes
into account the weights of the connections, and can be
directly extended to multiplex networks is the cosine similarity
of the two nodes [12]. For two vectors u and v the cosine
similarity is given by u·v

‖u‖‖v‖ . For weighted networks, the



vectors u and v represent the connectivity vectors of nodes u
and v, including the weights of the links of each node with
every other node in the network. For multiplex networks these
vectors can be extended to be the concatenated connectivity
vectors of all layers, i.e. u> = (u1

>,u2
>, ...,uL

>). The use
of the cosine similarity has several benefits. It guarantees that
the selected nodes of every step have the largest percentage
of common neighbors and the most similar weights among
any other pair of nodes. It works well with multiplex weighed
networks, and it is also not degree biased, treating nodes of
high and low degree equally.

Utilizing the concept of structural equivalence of nodes,
there are two possible implementations of the iterative ap-
proach. The first implementation is a greedy approach (G-
CS method), where in every step the cosine similarity of all
pairs of nodes is calculated so that the optimal pair is selected
to be merged. The second implementation is a semi-random
approach (SR-CS method), where in every step the first of
the two nodes is randomly selected among the nodes of the
graph and the second node is the best out of the first node’s
neighbors, i.e. the node that given the first selection provides
the highest result for cosine similarity. This second approach
does not guarantee that the nodes selected in every step are the
optimal ones. However, it carries some of the properties of the
proposed method (as it utilizes the cosine similarity as well),
it is not degree biased and provides a significant improvement
in the speed of the node selection algorithm.

After selecting the two nodes to be merged, the graph is
updated so that it now includes the newly created supernodes
and superedges. In each layer, the superedge weights corre-
spond to the average weight of the layer’s included edges
(with missing edges being assigned a weight value zero). The
remaining portion of the procedure focuses on producing the
rest of the output of the algorithm, i.e. the detailed mapping of
the nodes including the list of nodes in every supernode and
a corrections list that could be used to reproduce the original
graph if needed.

Finally, the values of similarity in connectivity patterns
among nodes (and supernodes) need to be recalculated as a
part of the graph has changed. The easiest approach would be
to recalculate every single value (one value for each possible
pair of nodes), however, this is a slow process, especially for
very large networks. A more efficient approach is to recalculate
the new similarity values only for the part of the graph that is
affected. This part includes all the one and two-hop neighbors
of the merged nodes, as well as nodes that were brought closer
together because of the newly created node.

III. EVALUATION OF NETWORK SUMMARIZATION

A. Baseline Methods
The value of our approach is demonstrated comparing the

results with two baseline methods that follow the same itera-
tive approach but differ in the node pair selection mechanism.

1) Minimizing Graph Distance: The first of the baselines
is a natural extension to multiplex networks of the work
published at [7]. The goal of that work was to produce a

compressed graph that when unfolded produces a graph with
the smallest possible distance from the original one. Extending
their graph distance measure to multiplex networks we can
calculate the distance of two graphs Ga and Gb as:

Da,b =

√√√√ L∑
l=1

∑
{(u,v)}l∈V×V

(wa(u, v)l − wb(u, v)l)2 (1)

In this equation wa(u, v)l and wb(u, v)l are the weighs of
the edges between nodes u and v in layer l of graphs a and b,
respectively. The first summation is over all layers l and the
second summation is over all pairs of nodes u and v that exist
in the given layer l. Notice that in our setting graphs a and b
would represent the original and the unfolded graph.

The distance-based summarization again selects nodes that
have a large percentage of common neighbors and edges of
very similar weights. However, this method is degree biased,
showing a preference in low degree nodes whose small number
of edges naturally produces a smaller distance in equation 1.

2) Fully-Random node selection: The second baseline
method is based on a random selection of two neighboring
nodes (FR method). This approach is not expected to maintain
the structural characteristics of the graph as well, it does offer,
however, an improvement in the speed of the node selection
process. It is a method that can be considered in large scale
applications or cases when fast summarization is required.

B. Compression Evaluation Measures

The different network summarization techniques are first
evaluated comparing the resulting graph summaries. Two
major aspects are considered: the size of the final network,
in terms of the number of edges after a given number of
algorithmic iterations as well as the quality of the graph
summary in terms of resemblance to the original network. The
following detailed measures are utilized:

1) Compression Ratio: As compression ratio we define
the ratio of the number of edges in the summarized graph
with the number of edges in the original graph. It represents
the reduction in the size of the network. Since the methods
presented in this work reduce the number of nodes with
a constant rate in each algorithmic iteration, the preferred
method reduces the number of edges at a higher rate.

2) Euclidean Distance from original graph: This measure
was introduced in [7] and is based on equation 1. Once
normalised with the number of nodes, it quantifies the dif-
ference between the original graph and the graph that is
unfolded from the summarized one. Naturally, the distance-
based baseline provides a graph with minimal difference from
the original one, as it is designed to provide just that. However,
the greediness of this approach does not guarantee a global
minimization of the distance.

3) Graph Edit Distance from original graph: The Graph
Edit Distance (GED) is a well established measure of similar-
ity between graphs that acts as a measure of topology change,
and in this context it is studied in detail in [13]. For two
graphs Ga = (Va, Ea) and Gb = (Vb, Eb) GED evaluates
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Fig. 2. Distance Baseline - Sample Network summarization: The left side graph depicts the same multiplex network of two layers as the previous figure. The
summarized graph is now generated using the distance-based baseline. The corresponding unfolded graph is also shown on the right part of the figure.

the sequence of elementary graph edit operations required to
modify an input graph Ga such that it becomes isomorphic to
a reference graph Gb and is given by:

GEDa,b =
|Va|+ |Vb| − 2|Vab|+ |Ea|+ |Eb| − 2|Eab|

|Va|+ |Vb|+ |Ea|+ |Eb|
(2)

where Vab and Eab indicate the node and edge overlap of
the two graphs with Vab = Va ∩ Vb and Eab = Ea ∩ Eb

4) Weighted Distance from original graph: GED does not
take into account the weighted nature of the networks. This
property can be considered by summing the differences in
edge-weight value over all edges in the two graphs. This
measure was studied in [13] and can be defined as:

DEWa,b =
∑

u,v∈V

|wa
uv − wb

uv|
max(wa

uv, w
b
uv)

(3)

C. Evaluation of Node Community Assignments

An important aspect of the original graph that characterizes
the graph intrinsic structure and should be maintained by a
graph summarization method is the node community assign-
ments. The consistency of these community assignments is
evaluated using an algorithm introduced in the work of [6],
designed specifically for multiplex networks. In our setting,
the community assignments in the original graph are compared
against the community assignments in the unfolded graph.

D. Structural Evaluation Measures

The different network summarization techniques are also
evaluated comparing the intrinsic structural characteristics of
the resulting graph summaries. For this purpose we utilize a
variety of network descriptors.

1) Intra-Graph Edge Overlap: The edge overlap measure
was originally introduced to evaluate the correlation of the
node connectivity patterns between layers [14, 15]. For our
purposes, this measure is redefined to compare the node
connectivity patterns between the corresponding layer of the
original and the unfolded graph and is given by

El
G,G′ =

1

|EP |
∑
i,j

Al
ij · U l

ij (4)

where Al
ij is the adjacency matrix of layer l in the original

graph G and U l
ij is the adjacency matrix of layer l in the

unfolded graph G′. In this context, El
G,G′ is a normalized

measure of the number of edges that Al
ij and U l

ij have
in common. The normalization constant |EP | represents the
number of links that the two graphs could have in common,

i.e. the number of edges in the network projected by the two
graphs. Finally, the intra-graph edge overlap is calculated as
the average of the edge overlap of all the layers: EG,G′ =
mean(El

G).
2) Degree distribution: Another characteristic of a graph

that can offer insight into the structure of each layer is the
distribution of the nodal degree [16]. In order to compare
the degree distribution of each layer of the original graph
with the degree distribution of the corresponding layer in the
summarized graph, we use a measure that is commonly used
in statistics for the comparison of probability distributions,
the Jehnsen-Shannon Divergence. This is a symmetric measure
with values between 0 and 1, having therefore all the character-
istics of a distance measure. Notice that, the Jehnsen-Shannon
Divergence of the two graphs is calculated as the average of
the values of all the layers.

3) Layer Pairwise Multiplexity: In most multiplex networks
not all nodes have connections in all layers. Then, every
pair of layers may or may not contain the same nodes and
may or may not have correlated node activity patterns. The
measure of Layer Pairwise Multiplexity (LPM) introduced in
[17] quantifies this correlation between layers a and b:

Qab =
1

N

N∑
i=1

βi,aβi,b (5)

where βi,a is the activity of node i on layer a and takes the
values 1 and 0 depending on whether the node is active or not
on the layer. For our purposes, this measure can be used as an
evaluation of the degree at which each summarization method
is changing the activity pattern correlations of the layers.
Such an example is evident by comparing Figures 1 and 2,
where it can be seen that the distance-based method generates
an unfolded graph with a node that was not present in the
original graph, changing the LPM of the two layers. Since
the measure characterizes pairs of layers, the average LPM
between all pairs of layers is calculated for the original graph
and then compared with the corresponding LPM calculated on
the unfolded graph.

4) Graph Clustering Coefficient: The graph clustering co-
efficient was originally introduced by Watts and Strogatz [18]
and it quantifies the tendency of nodes to form triangles,
following the popular saying “the friend of my friend is
my friend”. It’s extension for use with multiplex networks
[19] considers triangles that are formed not only using the
intralayer links, but also the interlayer links of nodes with their
counterparts. An example of such a natural situation arises
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TABLE I
THE NUMBER OF ALGORITHMIC ITERATIONS REQUIRED TO SUMMARIZE THE ORIGINAL NETWORK TO THE LEVEL WHERE THE NUMBER OF EDGES

EQUALS THE GIVEN PERCENTAGE OF THE NUMBER OF EDGES IN THE ORIGINAL NETWORK.

from a social sciences network where one person i knows j
from the university, i also knows k from work while j and
k know each other from a reading club. In these cases the
clustering coefficient of node i in a multiplex network is given
by

C(i) =

2
L∑̀
=1

|E`(i)|
L∑̀
=1

|N`(i)|(|N`(i)| − 1)

(6)

where |E`(i)| is the number of edges in the subgraph generated
by all the neighbors N(i) of node i (regardless of the layer in
which there is an edge) and the edges among these nodes on
layer `. Also N`(i) represents the subset of N(i) that is active
on layer `. Then the clustering coefficient of the network G
can be defined as the average of all the C(i).

The clustering coefficient presented in Equation 6 suffers
from a major limitation, its outcome does not take into
consideration the weight of the edges in the network. To
overcome this limitation we evaluate a different measure that
was originally introduced by [20] for weighted single-layer
networks. This measure takes into account the importance of
the clustered structure by measuring the interaction intensity of
the local triangles and is now extended for use with multiplex
networks. For node i we calculate:

Cw(i) =

L∑̀
=1

∑
j,h

(w`
ij+w`

ih)

2 a`ija
`
iha

`
jh

L∑̀
=1

s`i(k
`
i − 1)

(7)

where w`
ij is the weight of the edge between nodes i and j on

layer `, a`ij is the entry of the adjacency matrix corresponding
to the edge between nodes i and j on layer `, k`i is the degree
of node i on layer ` and s`i is the strength of node i on layer
` defined by s`i =

∑N
j=1 a

`
ijw

`
ij . The clustering coefficient of

the network G can be defined as the average of all the Cw(i).

E. Data

We evaluate our method on three real-world datasets. First,
we consider the network obtained using the food and agricul-
tural trade data from the Food and Agriculture Organization
of the United Nations [21] (FAO Data). In this network, nodes
represent countries connected using a symmetric measure of
Import-Export quantities of specific products between the two
countries. We consider five different products (Dried Fruit,

Macaroni, Margarine, Chicken, Prepared Nuts) creating a
multiplex network of five layers and 299 nodes.

The second dataset comes from the Bureau of Transporta-
tion Statistics of the United States Department of Transporta-
tion [22] (BTS Data). The data comprise the domestic segment
of the database and describe all the flights performed by
all carriers in 2014. In this network the 1222 US airports
represent nodes and the edges are created by a symmetric and
normalized measure of the number of departures between the
two airports. Finally, each of the five layers of the multiplex
network corresponds to one of the five largest airlines (the size
is measured by the total number of departures).

The third dataset is comprised of the complete set of protein-
protein interactions of C. elegans, as obtained from BioGRID
[23]. This is an un-weighted multiplex network of 3 layers
(3 types of interactions) formed by more than 3500 nodes
(proteins) and 10000 edges (protein-protein interactions).

IV. RESULTS

Results are presented separately for the three types of
evaluation measures introduced in Sections III-B - III-D:
compression evaluation, node community assignments and
graph intrinsic structure. Our experiments aim to address
several questions: ’How efficient is each of the methods in
networks compression: how many iterations of the algorithms
are required?’, ’How much is the network changing as it is be-
ing summarized?’, ’How does compression affect the intrinsic
clustering of nodes?’, and ’How much can we summarize the
network, while maintaining its structural characteristic?’.

The experimental setup is such that on each of the datasets
all four summarization methods are applied: both implemen-
tations of the proposed method that incorporates the cosine
similarity (Greedy and Semi-Random) and the two baseline
methods (Minimizing Graph Distance and Fully-Random node
selection). For each method, and after every summarization
step, the unfolded graph is generated and all the evaluation
measures are calculated.

Compression Ratio: ’How efficient is each of the methods
in networks compression?’. This question may be answered
using the results presented in Table I. The table lists the
number of algorithmic steps required to create a network
summary with the given percentage of edges. In all data
sets both implementations of the proposed method reduce the
number of edges at a faster rate than the baseline methods.
For example, to reduce the number of edges to 90% of that
of the original network in FAO data, the proposed methods
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Fig. 3. The evolution of the three distances between the original and the unfolded network, as generated after each of the summarization steps. The x axis
represents the Edges Ratio, whose value, as the summarization progresses and the number of edges becomes smaller, drops from 1 towards 0.

require about one-quarter of the steps needed by the Distance
minimizing method. Notice that, the smaller the number of
iterations required, the more efficient the process is and in the
case of C. elegans, which also represents the larger of our
datasets, the difference is mostly observed at higher summa-
rization percentages and offers a significant time reduction.

Distance from the original graph: ’How much is the
network changing as it is being summarized?’. To answer this
question, we use the three distance measures introduced before
and plot their evolution as the network is being summarized,
i.e. as the edges ratio in the summary drops from one towards
zero. The results, presented in Figure 3, indicate that both
implementations of our approach perform better than the
baselines, since the graphs are changing at a slower pace. In
the case of graph distance, one of the baselines was designed
explicitly to create a summary that is the least different from
the original network and therefore it is expected to outperform
the rest of the methods. However, for the FAO data, when
the graph was compressed to half of the original size, all
methods, except the random approach, generated graphs that
were equally different from the original one. On the BTS
data, the Greedy Implementation of our proposed method even
outperforms the baseline. This fact along with the non-smooth
line of the distance-based plot is explained by the greediness
of the nature of the Distance minimizing baseline method.

Node Community Assignments: ’How does compression
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Fig. 4. The percentage of node pairs that have consistent clustering assign-
ments in the unfolded and the original graph (i.e. node pairs that consistently
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affect the intrinsic clustering of nodes?’. To answer this
question we study the consistency of the assignment of nodes
in communities for each of the summarization methods. After
each summarization step the unfolded network is generated
and the community assignment algorithm is executed. Then,
we calculate the percentage of pairs of nodes that have been
assigned in the same or a different cluster, when compared
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Fig. 5. Comparison of the results for the two methods proposed and the two baseline methods for the FAO database. The various evaluation measures are
plotted against the edge ratio which represents the degree of summarization of the graph. In all plots, the gray line represents the starting value, i.e. the value
of the measure at the original network. As the summarization progresses and the number of edges in the summarized network becomes smaller the value of
edge ratio drops from 1 towards 0.

with their cluster assignment in the original graph. The results,
that include all the summarization steps, are presented in
Figure 4. For all three data sets, it is evident that the proposed
approach maintains more successfully and more consistently
the natural clustering of the original graph.

Structural Characteristics: ’How much can we summarize
the network, while maintaining its structural characteristic?’.
To answer this question we present in Table II the maximum
possible edge compression ratio under the restriction that the
given structural measures need to remain within the specified
percentage of their initial value. Then, for example using
the proposed method, in order to remain within 90% of the
original value of the Intra-Graph Edge Overlap, the network
can be summarized to the level where the number of edges
becomes 93% of their original number. If instead, we use the
minimum distance method or the fully random one we can
only achieve a summary of about 99% of the original edges.
Similar observations can be made for all the measures, as
indicated by the bold values of Table II marking the best per-
forming algorithm in each case. It is also worth noticing that
some characteristics are much more robust to summarization
than others. For example, we can use the proposed method to
summarize the FAO dataset network to the level of about 16%
of the original edges (edge compression ratio 0.163) and the
value of the weighted clustering coefficient will still be within
90% of its original value. This is not however the case for
the two baseline techniques, for which the edge ratio can only
get to 0.917 for the distance minimizing method and 0.726
for the random approach. More detailed results are plotted in
Figure 5 in order to answer the more general question: ’How

does compression affect the intrinsic clustering of nodes?’.In
these plots the evolution of the value of each of the measures
is presented as the summarization progresses from an initial
value of edge ratio 1 towards the final value 0. The robustness
of the clustering coefficients becomes now more evident, as
it remains practically stable until extreme values of edges
ratio. It also becomes clear that all the measures are changing
at a slower rate when the proposed summarization methods
are used, creating this way network summaries that are more
representative of the original network.

FAO Data
G-CS SR-CS Dist. FR

Intra-Graph Edge Overlap
95% 0.982 0.981 0.996 0.989
90% 0.936 0.933 0.994 0.967
70% 0.825 0.823 0.982 0.918
50% 0.660 0.660 0.964 0.848

Degree JSDiv
95% 0.982 0.999 0.982 0.984
90% 0.965 0.999 0.968 0.960
70% 0.306 0.302 0.803 0.510
50% 0.083 0.086 0.464 0.172

P. Multiplexity
95% 0.962 0.916 0.998 0.966
90% 0.637 0.880 0.998 0.913
70% 0.083 0.511 0.997 0.848
50% 0.014 0.456 0.994 0.806

Clust. Coeff.
95% 0.795 0.859 0.993 0.918
90% 0.268 0.818 0.917 0.818
70% 0.008 0.302 0.525 0.546
50% 0.005 0.026 0.262 0.296

W. Clust. Coeff.
95% 0.191 0.832 0.988 0.860
90% 0.163 0.487 0.917 0.726
70% 0.008 0.004 0.351 0.240
50% 0.004 0.004 0.025 0.070

TABLE II
THE MAXIMUM ACHIEVABLE EDGE COMPRESSION RATIO WHEN CREATING

A GRAPH SUMMARY THAT MAINTAINS THE STRUCTURAL MEASURES
WITHIN A GIVEN PERCENTAGE OF IT’S INITIAL VALUE.



V. CONCLUSION

Motivated by the recent increase in the use of Multiplex net-
works, whose exploration and utilization become increasingly
difficult, we propose a network summarization approach for
weighted multiplex networks. Our method focuses on remov-
ing structural redundancy while maintaining the information
carried by the intrinsic structure of the graph. Using real-world
data from different domains, our method is shown to maintain
more accurately the properties of the original graph and for
a larger summarization percentage. Conversely, the distance-
based approach and even more so the random approach
significantly alter the graph characteristics, leading to a graph
summary that should not be used as a guide for the description,
optimization, or calculation of statistics of the original net-
work. Furthermore, the proposed method is shown to reduce
the size of the network, as this is represented by the number
of edges, faster than the baselines resulting in a more efficient
summarization technique. Finally, the greedy implementation
of the proposed method is computationally comparable to the
distance-based approach as the bottleneck in both cases is the
search of the optimum pair of nodes for each step. However,
our results indicate that the semi-random approach carries
most of the benefits of the greedy implementation and is ad-
ditionally computationally competitive, reducing significantly
the time required for each step, and allowing the method to
be applied to larger datasets. Notice that, the presented results
are restricted to smaller size networks simply because the
calculation of the evaluation measures is not efficient. The
increased complexity of the calculations for the clustering
coefficient, pairwise multiplexity, and communities’ detection
restricted the size of the networks used for the evaluation and
presentation of results. The summarization algorithm itself can
be applied networks of any size.
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