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Abstract. Many studies fail to provide models for 30-day hospital re-admission 
prediction with satisfactory performance due to high dimensionality and 
sparsity. Efficient feature selection techniques allow better generalization of 
predictive models and improved interpretability, which is a very important 
property for applications in health care. We propose feature selection method 
that exploits hierarchical domain knowledge together with data. The new meth-
od is evaluated on predicting 30-day hospital readmission for pediatric patients 
from California and provides evidence that a knowledge-based approach out-
performs traditional methods and that the newly proposed method is competi-
tive with state-of-the-art methods. 

Keywords: Re-admission · Feature selection · Domain knowledge 

1 Introduction 

Hospital re-admissions, one of the major costs of hospital care, often result from pre-
ventable errors associated with discharging patients, such as hospital acquired infec-
tions, poor planning for follow up care, inadequate communication of discharge  
instructions, and failure to reconcile and coordinate medications. Timely identifica-
tion of potential readmissions can have high impact on improvement of healthcare 
services for patients, by reducing the need for unnecessary interventions and hospital 
visits, as well as for hospitals, by reducing costs and improving hospital status. Algo-
rithms for prediction of hospital re-admission often fail to produce well performing 
models because of high dimensionality of data (over 14,000 possible diagnoses in 
ICD-9 coding) and high level of data sparsity. Additionally, high dimensionality  
reduces the interpretability of predictive models. This is why it is utterly important to 
develop efficient feature selection methods that will lead to parsimonious predictive 
models: ones that will select a low number of features without loss in predictive  
performance. Even though there is a large number of current state-of the art feature 
selection techniques [1], only a few [4, 5] exploit domain knowledge represented in 
hierarchical features.  
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We address this problem by proposing a method that utilizes domain knowledge in the 
form of ICD-9 hierarchy together with data driven classification techniques. The effec-
tiveness of the proposed approach on predicting readmission on pediatric data from Cali-
fornia is evaluated. Additionally, we demonstrate synergetic effects of our method with 
Lasso logistic regression and show that it outperforms alternative methods. 

2 GHFCS – Group Hierarchical Feature Compression  
and Selection Method 

We propose a GHFCS method that exploits domain knowledge in the form of ICD-9 
hierarchy of diseases, where one disease can be categorized at most in four levels, 
from concrete diagnosis (i.e. mononucleosis) to high level concept (i.e. infectious or 
parasitic disease). The main intuition behind GHFCS is that the most of the specific 
concepts (features) in hierarchy do not bring good quality information about observed 
phenomena (in our case, readmission risk). This intuition applies on EHR because of 
high dimensionality and sparsity of hierarchy (only a small number of examples have 
the same diagnosis on the most specific level), and this often leads to poor predictive 
performance of the algorithms. Based on this, GHFCS tends to identify features with 
high information potential on the highest levels of the hierarchy without losing pre-
dictive power. Instead of selecting highly specific diagnoses, we can aggregate those 
diagnoses to a category from a higher level of the hierarchy. If the higher level cate-
gory is equally or more informative, it will be used instead of specific categories. 

The GHFCS method is based on a bottom up greedy strategy and utilizes all ICD-9 
hierarchical levels. First, the dataset is aggregated and fused on each level of hierar-
chy, creating an augmented feature space where every node in the hierarchy is repre-
sented as a feature. Further, greedy filter selection is applied starting from leaves of 
the hierarchy and comparing them with their parent node based on information theo-
retic measures (note that any information theoretic measure [1] can be used for as-
sessment of information potential). If the average information potential of child nodes 
is lower than that of the parent node, then all of the child nodes are removed from 
hierarchy (only the parent stays as a higher concept). If opposite, the parent node is 
removed from hierarchy and all of the child nodes are connected to the upper level 
node (parent of their original parent). This allows preservation of high information 
potential of low level features and examination of their synergetic influence with 
features of higher levels. Thus, the greedy assumption is reduced.   

In order to evaluate GHFCS we developed a benchmark method: SHFCS (Single 
Hierarchical Feature Compression and Selection). Unlike GHFCS, this strategy tends 
to keep many more features by comparison of information potential of each child 
node with its parent (single comparison). We also evaluate current state-of-the art 
methods with similar strategies. GTD (Greedy Top Down) [4] uses a greedy top-
down approach and the most informative feature from each hierarchy path. This ap-
proach selects features in a vertical manner, and in contrast to GHFCS does not utilize 
the whole hierarchy (it is ignoring the fact that one feature can be present in more 
than one hierarchy path). SHSEL (Simple Hierarchical Selection) [5] identifies and 
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