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Abstract

Ski injury research is traditionally studied on small-scale observational studies where risk factors from univariate and
multivariate statistical models are extracted. In this article, a large-scale ski injury observational study was conducted by
analyzing skier transportation data from six consecutive seasons. Logistic regression and chi-square automatic interac-
tion detection decision tree models for ski injury predictions are proposed. While logistic regression assumes a linearly
weighted dependency between the predictors and the response variable, chi-square automatic interaction detection
assumes a non-linear and hierarchical dependency. Logistic regression also assumes a monotonic relationship between
each predictor variable and the response variable, while chi-square automatic interaction detection does not require
such an assumption. In this research, the chi-square automatic interaction detection decision tree model achieved a
higher odds ratio and area under the receiver operating characteristic curve in predicting ski injury. Both logistic regres-
sion and chi-square automatic interaction detection identified the daily time spent in the ski lift transportation system as
the most important feature for ski injury prediction which provides solid evidence that ski injuries are early-failure
events. Skiers who are at the highest risk of injury also exhibit higher lift switching behavior while performing faster runs
and preferring ski slopes with higher vertical descents. The lowest injury risk is observed for skiers who spend more
time in the ski lift transportation system and ski faster than the average population.
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Introduction alone with 800,000 ski injuries expected worldwide each
year.

Building predictive models for ski injury from ski lift
transportation data is difficult, as the data are highly
imbalanced (i.e. only 0.2% of the population will even-
tually get injured while 99.8% will not get injured).
Therefore, ski injury research is usually done on small-
scale, case—control studies that analyze the injured
population or a small sample of the non-injured popu-
lation. Whether the sample population is a good

This article addresses the prediction of ski injuries
based on ski lift transportation data. Ski lift transpor-
tation data are heavily underused in ski injury research,
although these data are massively recorded and stored
at ski resorts. Skiing is a multibillion business in the
United States with 7.3 billion USD spent at US ski
resorts in 2014/2015 and 57.1 million average skier vis-
its (skier-days) yearly since the 2002/2003 season.'
America (mostly North America) has a total share of
21% of ski visits worldwide with 15% of the 21% from
the United States. The other worldwide ski visits com- I i . N

. aculty of Organizational Sciences, University of Belgrade, Belgrade,
prised the Alps at 43%, Western Europe at 11%,  serbia
Eastern Europe and Central Asia combined at 9%, and  2Center for Data Analytics and Biomedical Informatics, Temple
Asia and the Pacific combined at 15% with a total of  University, Philadelphia, PA, USA
400 million skier visits yearly worldwide.” .

With an average injury rate of two injuries per thou- Corresponding author: - . —_

. 3 Sandro Radovanovi¢, Faculty of Organizational Sciences, University of

sand skier days™ (IPTSD), each year more than 120,000  pelgrade, Jove llica 154, 11000 Belgrade, Serbia.
skiers are expected to get injured in the United States Email: sandro.radovanovic@fon.bgac.rs



https://uk.sagepub.com/en-gb/journals-permissions
https://doi.dox.org/10.1177/1754337117728600
journals.sagepub.com/home/pip

Proc IMechE Part P: | Sports Engineering and Technology 00(0)

representation is always questionable due to the huge
imbalance of injured to non-injured population and
heterogeneity of the skiing population.

Ski injury research frequently uses logistic regression
for reporting adjusted odds ratios (ORs).*> However,
this linear model fails to account for the attribute inter-
actions, where some attributes are good indicators only
in the presence of other attributes. Logistic regression
also has the limitation that it does not work well when
predictors and the response variable have a non-
monotonic relationship. Finally, logistic regression
assumes that the relationship between the predictors
and the outcome is linear with constant log odds incre-
ments. In addition to the logistic regression, this study
utilized the chi-square automatic interaction detection
(CHAID) decision tree algorithm.®’ This algorithm
produces a decision tree model that captures the hier-
archical and conjuncted relationships that exist in real-
world data and handles the non-monotonic and
non-linear relationship between predictors and the
response variable. In addition, CHAID uses chi-square
statistics for making decisions on the tree model growth
which branches trees on attributes that produce the
highest ORs. This is a preferable requirement for ski
injury research because of the high class imbalance.
The authors showed that the CHAID decision tree
model was a good predictor, achieving a higher OR
and area under the receiver operating characteristic
curve (AUC), as compared to logistic regression. In
addition, the decision tree model appeared to be useful,
revealing interpretable injury rules on sub-samples of
the whole population.

The main contributions of this article include the
following:

1. Proposing features from ski lift transportation data
that can be used for ski injury research (section
“Materials and methods™).

2. Proposing the application of CHAID decision tree
for ski injury prediction modeling (section
“CHAID decision tree analysis™).

3. Identification of risk factors that affect the occur-
rence of ski injuries (sections “Descriptive statis-
tics,” “Logistic regression analysis,” and “CHAID
decision tree analysis”).

4. Recognizing ski injuries as early-failure events (sec-
tions “Descriptive statistics,” “CHAID univariate
analysis,” and “Conclusion”).

A major limitation of this article is the lack of demo-
graphic data (i.e. self-reported skiing proficiency, gen-
der, age, etc.), so reported risk factors are demographic-
agnostic.

The remainder of the article is structured as follows.
In section “Literature review,” the background of
research similar to the research proposed in this article
is provided. In section “Materials and methods,” the
ski lift transportation data are presented, as well as the
features extracted from it that will be used in section

“Results” for building univariate and multivariate
models for ski injury predictions. The conclusions are
summarized in section “Conclusion.”

Literature review

Ski injury risk factors are well-studied. Gender,® age,’
skiing errors, fatigue, perception of low difficulty,® per-
ceived speed of skiing,> skillfulness and experience,” '
first-day participation,'? quality of equipment, type of
equipment,’ lessons taken,'? quality of ski slopes and
quality of their preparation, collision against objects,
preexisting medical conditions,'* snow conditions,?
poor visibility due to inclement weather,” design and
maintenance of ski slopes,'* as well as other factors all
influence the occurrence of ski injury. These risk factors
have been gathered prevalently through injury reports
and field studies. Hume et al.’ provided a complete
meta-analysis on ski injuries with reported ORs for var-
ious risk factors.

To the best of the author’s knowledge, ski lift trans-
portation data are rarely used for ski injury analysis,"
although mining sensor-collected data are an emerging
research area.'®!” D’Urso and Massari'® analyzed one
skier-day data and reported two types of skier beha-
vior, variety seekers who tend to switch often between
ski lifts and loyal skiers who typically stick to one ski
lift. On the other hand, several studies uncovered pat-
terns from transportation data, such as bicycle rentals
in Barcelona'® and the London metro system.'’
Exploiting sensor-based big data to analyze the safety
risks in real-time traffic operations for congestion and
crash risk'® is an emerging research field. Still, disco-
vering patterns from ski lift transportation data is not a
well-studied area, as the ski resort business has not yet
fully exploited the potential of the data being collected.

Predictive analytics methods have already been pro-
posed for ski resort decision-making. King et al.> pro-
posed a model for the number of skier-days (ski visits)
prediction. Models for predicting the number of ski
injuries have been proposed as well. Dalipi et al.?! pro-
posed using artificial neural networks, while Bohanec
and Delibasi¢'® proposed using a combined expert-
modeling and data-driven approach for the global daily
risk of injury on a ski resort. Still, to the best of the
author’s knowledge, articles that use ski lift transporta-
tion data for individual ski injury risk assessment are
not reported in the literature.

Materials and methods
Data

This research was conducted on ski lift transportation
data obtained from the largest Serbian ski resort, Mt
Kopaonik. These data include all ski lift gate entrances
from six consecutive seasons between 2006 and 2011.
The basic characteristics of the ski lifts in the Mt
Kopaonik ski resort are included in Table 1. Lifts with
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Table I. Mt Kopaonik ski lifts and their basic characteristics.

Ski lift Type Entrance Exit Vertical Hourly ski lift Difficulty of
altitude (m) altitude (m) ascent (m) transportation accessible slopes
(skiers/h)

Krémar Two-seat chair lift 1520 1991 471 815 |
Duboka 2 Four-seat chair lift 1520 1904 384 1800 B
Duboka | Four-seat chair lift 1616 1976 360 1800 A
Gvozdac T-bar 1626 1915 289 1191 A
Centar Two-seat chair lift 1704 1976 272 2070 |
Pancicev vrh Four-seat chair lift 1728 1976 248 2400 |
Gobelja greben Four-seat chair lift 1730 1929 199 2400 I
Mali karaman Four-seat chair lift 1731 1927 196 2400 B
Mali karaman Platter lift 1731 1927 196 900 B
Suvo rudiste T-bar 1778 1970 192 1191 |
Marine vode Platter lift 1740 1927 187 900 B
Gobelja rele Platter lift 1754 1934 180 960 |
Karaman greben Six-seat chair lift 1725 1904 179 3000 B
Knezevske bare Platter lift 1768 1917 149 900 B
Karaman Platter lift 1790 1934 144 900 B
Sunéana dolina Four-seat chair lift 1640 1778 138 2070 B
Krst Four-seat chair lift 1720 1823 103 2018 B
Jaram Platter lift 1791 1859 68 900 B
Malo jezero Platter lift 1715 1778 63 880 B
Masinac Platter lift 1734 1767 33 450 B

Difficulty levels are denoted as B: beginner (blue), I: intermediate (red), and A: advanced (black). Lifts are sorted by vertical ascent in descending

order.

higher vertical ascents usually correspond to slopes
with a higher degree of difficulty. Each ski lift on Mt
Kopaonik has ski lift gates that read ski ticket data at
the moment of entrance. Therefore, ski lift gate data
for each skier are recorded. In this article, the term
“skier” will be used as a generic term for all winter
sport participants using ski lifts including skiers, snow-
boarders, and so on. The ski injury data have been
obtained from the mountain rescue service and inte-
grated with the ski lift transportation data.

The ski lift transportation data consist of the follow-
ing attributes:

Skier id
e Ski lift gate id
e Date and time of ski lift gate usage

Injury records include the skier id, date, and time of
injury.

Skiers with a weekly ski ticket who were allowed to
use the ski resort for the entire week with unlimited
daily access were included in this study. They represent
the largest population of ski lift ticket holders.
Exclusion criteria were established for skiers who got
injured on their first run because features shown on
Table 2 could not be calculated for them. The dataset
contained over 6million ski lift transportations with
503,368 corresponding skier-days. There were 768
all-type injuries present in the data. One skier-day
(skier-visit) holds statistics for 1-day skier activity. The
average IPTSD over the six seasons was 1.53 which is
consistent with injury rates reported in literature.?

Extracted features from ski lift transportation data
with corresponding formulas and descriptions are sum-
marized in Table 2.

Methods

In this article, the authors utilized univariate and multi-
variate predictive models for ski injury prediction. To
be comparable to other researchers, data analysis was
performed in the same manner as others. Rued] et al.’
analyzed injuries of recreational skiers during four sea-
sons in Austria using multivariate logistic regression
with forward stepwise selection to derive adjusted ORs
for attributes. The Mann—Whitney U-test was applied
for attribute selection by selecting those attributes with
a p-value less than or equal to 0.1 to control for con-
founding of features. This experimental setting was the
baseline approach that was benchmarked against the
CHAID decision tree analysis.

Results

In section “Descriptive statistics,” descriptive statistics
of features are shown, as well as a univariate data anal-
ysis of the features. In section “CHAID univariate anal-
ysis,” a Mann—Whitney U-test and a CHAID will be
used to test for statistically significant differences on
non-injured and injured population distributions of fea-
tures. In section “Multivariate analysis,” logistic regres-
sion and a CHAID decision tree will be utilized for the
multivariate data analysis.
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Table 2. Ski lift transportation features.

Feature Formula Description

Normalized LN Describes ski lift switching behavior. It takes values
variability N=T -Zz Vi from the [0, 1] interval. A hi§her value indicates that a
seeking index Vv, ='6 if s(i)=s(i — 1) skier changes ski lifts often.'

(NVsI) Vi=1, otherwise

Normalized
distinct lift
count (NDLC)

Normalized
hourly
familiarity index
(NHFI)

Elevation (AVG)

Time (AVG)

Time (SUM)

s(i) presents the ski lift for the ith ski lift
transportation; N is the ski lift transportation
count

| is the count of distinct ski lift visits
I is the average population count of distinct ski
lift visits
N is the average population count of ski lift visits
A is the regularization parameter [0, o]
N -
=P
i=2
t, is the average hourly population descent time
for a s(i) and s(i — |) ski lift pair
t; is the time between the ski lift gate check-in
timestamp iandi— |

N
N2 €

i=l
e; presents the elevation for descent i

N

N2 th

h=1
t, presents the length of descent h measured in
minutes

timey — time
timey presents the timestamp of the last ski gate

Describes ski lift switching behavior. Compared to
NVSI, it takes into account distinct ski lifts and uses a
regularization term to control for noisy data that might
occur when there are a small number of ski lift
transportations.

Measures whether a skier is faster or slower than the
skier population on an hourly basis for a specific lift
(i— 1) to lift (i) transition. Positive values indicate faster
skiing while negative values indicate slower skiing. This
measure is an adapted measure from Lathia et al."”

Average vertical meters per descent.

Average time per descent.

Total time spent in the ski lift transportation system.

check-in time on a skier-day
time, is the timestamp of the first ski gate
entrance on a skier-day

Table 3. Descriptive statistics of the extracted features.

Feature Mean = standard deviation
NVSI 0.4569 + 0.2329

NDLC 0.3640 = 0.0772

NHFI —0.0741 £ 0.4282
Elevation (AVG), m 208.32 = 59.17

Time (AVG), hh:mm 00:27 = 00:13

Time (SUM), hh:mm 04:22 = 01:35

NVSI: normalized variability seeking index; NDLC: normalized distinct
lift count; NHFI: normalized hourly familiarity index.

Descriptive statistics

Table 3 provides basic statistics (mean and standard
deviation) for features extracted from Table 2. The
average time between two ski lift transportations is
27 min, while skiers on average spend 4h 22 min in the
ski lift transportation system. The average vertical des-
cent between consecutive ski lift transportations is
208 m. Skiers express a 45.7% switching behavior in
terms of normalized variability seeking index (NVSI)
and 36.4% with respect to normalized distinct lift count
(NDLC). The average speed of skiers, represented by

normalized hourly familiarity index (NHFI), is 0, which
is expected as this feature takes values in the [—1, 1]
range and compares individual skiing times with the
corresponding population.

In Figure 1, boxplots for each extracted feature are
shown over the six analyzed seasons. Feature medians,
as well as the first and the third quartiles, were quite
stable during the six seasons, indicating the features
were not sensitive to a specific season. However, a
slightly decreasing trend in average skiing time was evi-
dent which is likely a result of ski lifts having been
replaced by ones with higher capacity during the
observed study period. This change reduced the aver-
age time between ski lift transportations.

Injured and non-injured population distributions for
each feature are shown in Figure 2. Differences between
the non-injured and injured population distributions are
most evident on the total amount of time spent in the ski
lift transportation system shown on the time (SUM)
graph. Skiers tend to get injured early in the ski lift trans-
portation system. On the NDLC, injured skiers demon-
strate a higher switching behavior than the injured
population. Clear separations between injured and non-
injured population distributions on other features are
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Figure 1. Boxplots of ski lift transportation features over six seasons.
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Figure 2. Histogram and density plots (red color represents injured skiers, green non-injured skiers).

not so obvious. Their role will become more clear in the
multivariate models proposed in sections “Logistic
regression analysis” and “CHAID decision tree analysis”
where it will be shown that several features can also dis-
criminate soundly on the injured and non-injured popu-
lation, yet in conjunction with other features.

The Mann—Whitney U-test was used to test the
hypothesis whether there were statistically significant
differences between the injured and non-injured skier
populations for various ski lift transportation features.
The test does not assume a normal distribution of fea-
tures. As shown in Table 4, the most significant differ-
ences are observed for NVSI, NDLC, and time (SUM).
Time (AVG), elevation (AVG), and NHFT are not sig-
nificantly different according to this test, yet it will be
shown later that these features might express signifi-
cance when in conjunction with other features. This is
why pre-filtering of features based on such test could
be deceiving.

CHAID univariate analysis

The Mann—Whitney U-test provides a global assess-
ment on whether statistically significant differences
exist for features in the injured and non-injured popula-
tion. The CHAID algorithm,*?* besides being a method
that produces decision tree models, can be used as a
tool for searching for significant differences on seg-
ments of a continuous feature utilizing the chi-square
test. In Figure 3, the detected significantly different fea-
ture segments known as bins are presented, where the
height of a bin represents the IPTSD. The green bars
present the population with IPTSD below the average
and red bars show the injured population equal to or
greater than the IPTSD. For the average IPTSD of 1.53
which is assumed to be the decision threshold on
whether a skier is in the higher injury risk group or
lower injury risk group, the ORs with 95% confidence
intervals, true-positive rate (TPR), and false-positive
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OR with 95% Cls, FPR, TPR
OR =2.12 (1.836 - 2.438)***
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FPR = 0.533, TPR = 0.668

202

1.67

IPTSD
3
IPTSD

<=0.11 (0.1, 0.2500.25, 0.411041,0.4000.49, 0.540.54, 067067, 074) >0.74 <=-0.46

VSl intervals

OR with 95% Cls, FPR, TPR 3 OR with 95% Cls, FPR, TPR

OR = 1.44 (1.247 - 1.663)"**

FPR = 0.500, TPR = 0,589 FPR=0.301, TPR=0.418
244

1.97

1.77

IPTSD
IPTSD

1.26

=

<=146.74  (146.74,176.33] (176.33 181.79] (181.79,233.93]  >233.93
Elevation (AVG) intervals

(17 <=00:16
jation (AVG) it

(048,048, (045.076) >0.76 <=0.344
NHFI intervals

OR = 1.67 (1.446 - 1.923)"**

(00:16, 00:18)
Time (AVG) intervals

OR with 95% Cls, FPR, TPR
279 OR =2.12 (1.796 - 2.497)"**

FPR = 0.595, TPR = 0.757

242

IPTSD

1.69

(0.344, 0.429) >0.429
NDLC intervals

OR with 95% Cls, FPR, TPR
OR =4.96 (4.303 - 5.719)"**
FPR =0.196, TPR = 0.547

5.93

21

IPTSD_

(00:18, 00:40] <00:40 <=02:03 (02:03, 02: 54) (02:54, 04:30) >04:30
Time (SUM) intervals

Figure 3. Univariate decision models identified by CHAID.

Table 4. Mann—Whitney U-test (characteristics of factors
associated with injury).

Feature Asymptotic significance
(two-tailed significance)

NVSI 0.00 [ ***

NDLC 0.000%#**

NHFI 0.492

Elevation (AVG) 0.333

Time (AVG) 0.080

Time (SUM) 0.000%##*

NVSI: normalized variability seeking index; NDLC: normalized distinct
lift count; NHFI: normalized hourly familiarity index.
*p < 0.05; **p < 0.01; ***p < 0.001.

rate (FPR) are given in gray boxes in the upper left cor-
ner of each histogram.

CHALID univariate predictive models (decision trees
with one level called decision stumps) produce ORs
ranging from 1.44 (elevation (AVG)) to 4.96 (time
(SUM)) which is a satisfactory segmentation for uni-
variate models. TPR ranged from 41.8% to 75.7%
while FPR varied from 19.6% to 59.5%. All identified
univariate models achieved a chi-square significance of
p < 0.001.

One benefit of the CHAID decision stumps is the
ability to identify non-linear and non-monotonic
dependence in data. Figure 3 shows univariate decision
models identified by CHAID, where red represents
higher risk of injury and green represents lower risk of
injury. On Figure 3, the NVSI, NHFI, elevation
(AVG), and time (AVG) express non-linear and

non-monotonic behavior. NHFI and time (AVG) have
a quadratic form relationship with the response vari-
able which is a common behavior in many advents. For
example, the time (AVG) feature reveals that skiers
with a shorter time (faster skiers) and longer time
(slower skiers) have a higher risk of injury, while
medium-speed skiers are at lowest risk of injury. Time
(SUM), although having a monotonic relationship with
the response variable, expresses a non-linear, exponen-
tial relationship. Logistic regression models assume a
log linear and monotonic relationship between the pre-
dictors and the response variable, so they do not deal
properly with features that do not have such properties.
On the other hand, decision trees do not require such
assumptions and are more appropriate to use when fea-
tures express non-linear and non-monotonic behavior.

NVSI and elevation (AVG) express the most com-
plex relationship toward the response variable. Such
behavior might be an indicator that there are clusters
in data. For example, skiers who use different ski lifts
would show different behavior. Ski lifts may provide
access to several or just a few other ski lifts and the lifts
also have intrinsic characteristics of vertical elevations.
Therefore, skiers who only use several ski lifts in a spe-
cific part of the mountain during a day could express
different injury patterns than skiers who use several ski
lifts on a different part of the mountain. This is in
accordance with the findings of Greve et al.?® who
report that ski injuries are ski resort—dependent.

As shown in Figure 3, time (SUM) expresses an
exponential dependence toward injury with the distri-
bution resembling a Weibull early-failure distribution,
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which models the “time-to-failure” data. As ski injury
often occurs early in the ski lift transportation system
and the distribution function shows exponential decay,
ski injury can be assumed to be an early-failure event.
Still, studying ski injuries as early-failure events is out
of the scope of this article, so it will be left for verifica-
tion by future studies.

The Mann—Whitney U-test has recognized signifi-
cant differences in distributions for NVSI, NDLC, and
time (SUM), yet it failed to identify that there are sig-
nificant differences for NHFI, elevation (AVG), and
time (AVG) on specific intervals of features.

Multivariate analysis

Multivariate modeling was also applied during this
study. Logistic regression and the CHAID decision tree
algorithm were applied as they both can produce classi-
fiers, yet with different models. Logistic regression pro-
duces models which assume a log linear and monotonic
relationship between the predictors and the response
variable, while CHAID assumes hierarchical splits of
dependencies. Another reason why the CHAID deci-
sion tree was used is because it can build models for
injury detection on highly imbalanced datasets.
Decision trees, such as CART and C4.5, do not have
such capabilities because their split growing measures
cannot identify significant differences on highly imbal-
anced populations. To obtain fair performance, evalua-
tion training and testing sets were created. The training
set was a random stratified sample on 80% of the
whole population, while the remaining 20% were
selected for testing. Models were evaluated using OR,
AUC, TPR, and FPR. The decision threshold was set
at 0.153% which was the average IPTSD, meaning that
an injury event was predicted if the probability was
greater than or equal to 0.153%. A decision threshold
identification procedure proposed by Shi and Abdel-
Aty' was also tested and the proposed decision thresh-
olds were 0.132% for CHAID and 0.142% for logistic
regression. The proposed threshold for CHAID did not
influence the classification results and the classification
results for logistic regression were slightly worse. Thus,
the average IPTSD threshold was adopted for both
models.

Logistic regression analysis. Multivariate logistic regression
with forward stepwise selection derived adjusted ORs
for features as in Ruedl et al.” The Mann-Whitney
U-test was applied for attribute selection by selecting
those attributes with a p-value less than or equal to 0.1
to control for confounding.’ In Table 5, logistic regres-
sion coefficients with 95% confidence intervals, as well
as level of significance, are given. Based on the chosen
classification threshold, the AUC, OR, TPR, and FPR
were calculated.

Logistic regression achieved AUC 73.27%, OR 4.68,
while TPR was 68.35% with a corresponding FPR of
31.57%.

Table 5. Logistic regression coefficients (95% ClI).

Feature Adjusted odds ratios

NVSI —0.13666* (—0.26173, —0.01280)
NDLC 0.28898*** (0.14870, 0.42990)
Time (SUM) —0.72327*** (—0.81945, —0.62793)
Intercept —6.85506*** (—6.96256, —6.75173)

NVSI: normalized variability seeking index; NDLC: normalized distinct
lift count.
p < 0.1;* < 0.05; **p < 0.0l; ***p < 0.001.

Forward selection eliminated time (AVG), while
NHFI and elevation (AVG) were not considered since
they were not significant. Logistic regression coeffi-
cients suggest that the increase in time (SUM) decreases
the injury risk, which means that skiers spending more
time in the ski resort are at smaller risk of getting
injured. This could also mean that more physically pre-
pared skiers are less prone to injuries. These findings
are consistent with results obtained in similar types of
research®* 2 which identify that better physical pre-
paration reduces the likelihood of injury.

However, the increase in NDLC which indicates
switching behavior increases the chances of injury as
well. On the other hand, higher NVSI values signify
injury risk decrease. These conclusions are, at first
glance, conflicting, as both features indicate switching
behavior. Nevertheless, NVSI considers switching
behavior between two consecutive ski lift transporta-
tions (i.e. it only considers whether the same lift was
used for the previous and current ski lift transporta-
tion). On the contrary, NDLC takes into consideration
the relative number of distinct lifts a skier has used
while staying in the ski lift transportation system.
Obviously, these two features do not explain the same
kind of switching behavior. NDLC signifies that a
higher relative use of distinct ski lifts increases the
chance of injury. This could be due to more exposure
of skiers to different ski slopes and snow conditions.
This type of behavior cannot be captured with NVSI
which could identify skiers who select only a few,
nearby ski lifts, switching often between them, indicat-
ing a tendency to stick to a few ski lifts and trails dur-
ing a skier-day. This conclusion is strengthened by the
fact that the features do not have a variance inflation
factor greater than 4 (time (SUM) = 1.5752,
NDLC = 2.8169, and NVSI = 3.0504), indicating that
interpretation of coefficients is not distorted by
multicollinearity.?’

CHAID decision tree analysis. A CHAID decision tree can
build models for injury detection on highly imbalanced
datasets, as can logistic regression. Decision trees, such
as CART and C4.5, do not have such capabilities
because their split growing measures cannot identify
significant differences on highly imbalanced popula-
tions. CHAID grows a decision tree model on features
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Figure 4. CHAID decision tree for ski injury prediction. Red boxes are decision leaves with IPTSD greater than or equal to the
average IPTSD of 1.53. Green boxes denote decision leaves with IPTSD less than the average IPTSD.

which maximize the chi-square statistics, which has the
same basis that is used for OR significance calculation.
For all these reasons, CHAID was found as a sound
choice for ski injury prediction.

A common pitfall of decision trees is that they pro-
duce overfitted models that have a high generalization
error.”® To avoid overfitting, the parameters were
selected for the CHAID modeling. Minimal skiers in
the parent node (preceding) and minimal skiers in the
child node (subsequent) were set to 6000 and 4000,
respectively, while the maximal tree depth was fixed to
3. The CHAID decision tree model achieved an AUC
of 73.78%, OR 6.51, while TPR was 65.82% and FPR
22.83%. The AUC gives an overall assessment of the
prediction quality of models based on TPR and FPR,
but independent on the decision threshold. Both logis-
tic regression and CHAID achieved a similar AUC,
CHAID being better by 0.5%. Still, when comparing
OR, TPR, and FPR, which are all dependent on the
decision threshold, CHAID outperformed logistic
regression (i.e. on the decision threshold of 0.153%,
CHAID better discriminated between the injured and
non-injured population). Although logistic regression
achieved a 3% higher TPR, this resulted in almost a
9% higher FPR.

The decision tree model shown in Figure 4 splits the
entire population, shown by the root node with a 1.53
IPTSD, into hierarchically nested subgroups with cor-
responding population shares and injury rates. A deci-
sion model consists of nodes, subgroups of the entire
population, and branches and rules for discriminating
between nodes, where the final nodes on each branch
trace are denoted as leaves. CHAID identified in total
21 nodes, excluding the root node, with 14 decision
leaves. Each tree leaf is also characterized by the risk of
injury, given by the IPTSD, as well as the percentage of
the population for which a decision rule applies. For
example, node 6 represents skiers who spend less than
2h 3min in the ski resort and whose NDLC is in the
(0.36-0.43] range. They have an injury rate of 5.79 and
include 3.9% of the population. Red boxes show leaves

whose injury rates are greater than or equal to the 1.53
average injury rate (risky skiing patterns) while the
green boxes present the leaves whose injury rates are
less than the average (safe skiing patterns).

CHAID recognized time (SUM) as the most impor-
tant attribute for ski injury segmentation. As the time
spent in the ski lift transportation system increased, the
injury rate dropped. The finding that the total daily
time spent in the ski lift transportation system discrimi-
nated best between the injured and non-injured popula-
tion was also suggested by the logistic regression model
in section “Logistic regression analysis.” This assump-
tion could wrongly imply that skiers who spend less
daily time in the ski resort are at higher risk of injury.
As noted in Figure 4, the decision tree model identified
that 10.3% of the population that spent less than or
equal to 2h 3min in the ski lift transportation system
each day had an injury rate of 5.93. This is a conclusion
that cannot be made based on this research as the setup
could not evaluate whether skiers who ski less are at
higher risk of getting injured. What was observed with
a high level of confidence was that ski injuries occurred
early in the ski lift transportation system.

For skiers who spend more than 2:54 h in the ski lift
transportation system (nodes 3 and 4), it is important
to take into consideration NHFI when assessing the
injury risk. The results from nodes 10-12 and 13-15
indicate that the injury rate decreased as NHFI (speed
of skiing) increased. The injury rates of faster skiers in
nodes 12 and 15 were three to five times lower than
injury rates of slower skiers in nodes 10 and 13, respec-
tively. This might be explained by advanced and begin-
ner skiers being included in the population and similar
rates were reported for beginner and advanced skiers in
literature. Ekeland et al.'' report that beginner skiers
have an injury rate three times higher than experts,
while Laporte et al.'” reported beginner skiers having
injury rates five times higher than experts.

For skiers who spend less than or equal to 2:54h in
the ski lift transportation system (nodes 1 and 2), the
decision tree model chooses the switching behavior
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(NDLC) as the next most important feature for risk
classification. Higher switching behavior is consistently
related to higher injury risk. Nodes 9 and 7 have two
and three times higher than the average IPTSD,
respectively.

For the group of skiers who spend the least amount
of time in the system, less than or equal to 2:03 h (node
1) with the highest switching behavior population (node
7), the average time needed between two ski lift trans-
portations needs to be considered. Skiers who take less
than or equal to 18 min between two ski lift transports
(node 20) are at highest risk of injury, more than eight
times higher than the average ski injury rate. This sub-
group, which has 0.9% of the population, has the high-
est observed injury rate. This is the population with the
highest switching behavior and smallest amount of time
between two ski lift transports. Skiers who ski less than
or equal to 2:03h with a NDLC less than or equal to
0.43 (nodes 6 and 5) discriminate risk best on the aver-
age height of ski lift descents. Skiers with larger average
descents in nodes 17 and 19 have injury risks two to
three times greater than skiers with smaller average des-
cents in nodes 18 and 16.

Although NVSI was proposed by the Mann—
Whitney U-test as a significant feature which was also
included in the logistic regression model, it was not
included in the CHAID model. In addition, features
that were determined not to be significant according
the Mann—Whitney U-test, including NHFI, elevation
(AVG), and time (SUM), were included in the CHAID
model. This is because decision tree models allow detec-
tion of interactions between the predictors and the out-
come variable on sub-samples of the population.
Identifying conjuncted interactions between predictors
and the response variables cannot be recognized with
standard logistic regression models. NHFI would not
be included in a logistic regression model; still, in con-
junction with time (SUM), this predictor demonstrates
an important mechanism of ski injury occurrence.

Conclusion

One might expect that injury occurs at a constant rate
throughout the entire skiing day. However, most
injuries occur in the first couple of hours of skiing,
independent of whether a skier-day has started at the
opening time of the ski lift transportation system or
later during the day. As ski injuries occur early in the
ski lift transportation system, they can be characterized
as early-failure events. Skiers are mostly injured in the
first couple of hours of skiing, and the more risky
mechanisms of injury can be explained through higher
switching behavior, higher average vertical descents,
and shorter average time between ski lift transporta-
tions. The results of this research imply that skiers need
advice on how to stay injury free for a longer period of
time in the system. This need could be addressed by
development of safety guidelines on how to behave in

the first couple of hours of skiing when the risk of
injury is the highest. Higher switching behavior (in
terms of NDLC), higher average descents, and smaller
amounts of time in the transportation system have
shown to induce the highest injury rates. Also, some of
the interpreted factors correspond to previous studies.
However, this study derived the behavior features from
ski transportation data, rather than from question-
naires, which is more readily available. Additionally,
ski transportation data include a large sample of con-
trol data points, unlike previous case—control studies.
The models could be applied to a much broader
population.

Several features were proposed which can be used
when analyzing ski injury occurrence based on ski lift
transportation data. This article emphasized the poten-
tial of using the CHAID algorithm for analysis of ski
injury which provides an interpretable-rich supplement
to logistic regression models, which are usually
regarded as baseline models in ski injury research.
CHAID also allowed for the discovery of factors which
are independently not significant, but jointly show sig-
nificance regarding the response variable.

This article proposed several ski injury prediction
models based on ski lift transportation features. Still,
demographic-aware predictors, meteorological predic-
tors, ski slope condition predictors, and so on would
certainly enrich and improve these models. This
research opens several future research directions. It
would be interesting to analyze the potential of ski lift
transportation data for early ski injury prediction.
Injury days prior to injury could be used to analyze the
injury risk as well. Near-real-time ski injury prediction
would also be a valuable contribution. That would
mean collecting ski lift transportation data in real-time
and providing advice to skiers for safer skiing. To con-
clude, ski lift transportation data provide opportunities
for the creation of injury prediction models which can
be used for prevention of ski injury and reduction in
injury rate.
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