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The number of intrinsically disordered proteins known to be involved in
cell-signaling and regulation is growing rapidly. To test for a generalized
involvement of intrinsic disorder in signaling and cancer, we applied a
neural network predictor of natural disordered regions (PONDR VL-XT)
to four protein datasets: human cancer-associated proteins (HCAP),
signaling proteins (AfCS), eukaryotic proteins from SWISS-PROT
(EU_SW) and non-homologous protein segments with well-defined
(ordered) 3D structure (O_PDB_S25). PONDR VL-XT predicts $30 con-
secutive disordered residues for 79(^5)%, 66(^6)%, 47(^4)% and
13(^4)% of the proteins from HCAP, AfCS, EU_SW, and O_PDB_S25,
respectively, indicating significantly more intrinsic disorder in cancer-
associated and signaling proteins as compared to the two control sets.
The disorder analysis was extended to 11 additional functionally diverse
categories of human proteins from SWISS-PROT. The proteins involved
in metabolism, biosynthesis, and degradation together with kinases,
inhibitors, transport, G-protein coupled receptors, and membrane proteins
are predicted to have at least twofold less disorder than regulatory,
cancer-associated and cytoskeletal proteins. In contrast to 44.5% of the
proteins from representative non-membrane categories, just 17.3% of the
cancer-associated proteins had sequence alignments with structures in
the Protein Data Bank covering at least 75% of their lengths. This relative
lack of structural information correlated with the greater amount of
predicted disorder in the HCAP dataset. A comparison of disorder
predictions with the experimental structural data for a subset of the
HCAP proteins indicated good agreement between prediction and
observation. Our data suggest that intrinsically unstructured proteins
play key roles in cell-signaling, regulation and cancer, where coupled
folding and binding is a common mechanism.
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Introduction

The dominating concept that protein structure
determines protein function is undergoing

re-evaluation. Interest in intrinsically unstructured
proteins is rising because of recognition that bio-
logical function derives from ordered 3D structure
and from the lack of specific structure. Indeed,
some proteins require the absence of prior 3D
structure to carry out their functions.1 – 3 A litera-
ture review including more than 90 proteins
revealed that a majority of known disordered pro-
teins or domains were involved in cell-signaling
or regulation via non-catalytic interactions with
DNA, RNA, or other proteins.4 Such unstructured
regions become folded upon binding to their
targets, thereby confirming that initial 3D structure
is not required for biomolecular recognition.5 – 7
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Molecular recognition involving intrinsically dis-
ordered proteins has two features that provide
important functional advantages for signaling and
regulation. First, disordered regions can bind their
targets with high specificity and low affinity.2,8

Second, intrinsic disorder promotes binding diver-
sity by enabling proteins to interact with numerous
partners.7,9 Thus, hubs and nodes in signaling net-
works are likely to include proteins with extended
disordered regions. In support of this possibility,
two well-studied proteins, p53 and HMGA, inter-
act with their multiple partners mostly via regions
of intrinsic disorder.10

A comparison of two complete eukaryotic gen-
omes, a unicellular yeast Saccharomyces cerevisiae
and multicellular nematode Caenorhabditis elegans,
suggests that multicellular organisms have
developed elaborate signal transduction and regu-
latory control by employing novel proteins. Many
of these proteins re-use evolutionarily conserved
domains whose functions were initially unrelated
to signal transduction.11 Flexbility and disorder in
linkers connecting these domains in multidomain
eukaryotic proteins appears to be an important
characteristic of multicellularity.

The prevalence of intrinsically unstructured
proteins in eukaryotic genomes in comparison to
bacteria and archaea12 together with numerous
examples of unstructured regions in regulatory
proteins7,13 may reflect the greater need for dis-
order-associated signaling and regulation in
nucleated cells.10 Here, we apply a predictor of
intrinsically unfolded protein regions to investigate
disorder in cancer-associated and cell-signaling
proteins. We then compare the amount of predicted
disorder among diverse protein categories and corre-
late our predictions with the available structural
information. The results support a general involve-
ment of intrinsically unstructured proteins in cell-
signaling, regulation and human cancer.

Results and Discussion

Disorder prediction on cancer-associated and
cell-signaling proteins

To test for an association between signaling and
intrinsic disorder, we used a predictor of natural
disordered regions (PONDR VL-XT)14 to systemati-

cally analyze the intrinsic disorder tendencies in
four protein datasets (Table 1): (1) human cancer-
associated proteins from SWISS-PROT (HCAP); (2)
signaling proteins collected by the Alliance for
Cellular Signaling (AfCS); (3) the eukaryotic
proteins from SWISS-PROT (EU_SW); and (4). a
set of non-homologous protein segments with
well-defined (ordered) 3D structure from the
Protein Data Bank Select 25 (O_PDB_S25). The
O_PDB_S25 dataset provides a non-redundant
control for estimating the false-positive disorder
prediction error rate.

The analysis of PONDR VL-XT predictions
demonstrates that predicted disorder followed the
ranking HCAP . AfCS . EU_SW q O_PDB_S25
(Figure 1). The same ranking was observed
whether the results were presented as percentages
of proteins (Figure 1(a)) or as percentages of resi-
dues (Figure 1(b)). The percentages of proteins
(^ two standard errors) with 30 or more consecu-
tive residues predicted to be disordered were
79(^5)% for HCAP, 66(^6)% for AfCS, 47(^4)%
for EU_SW, and 13(^4)% for O_PDB_S25, with
the errors estimated as described in Materials and
Methods. Thus, ,1.6-fold and ,1.4-fold more of
the HCAP and AfCS proteins, respectively, had
predicted disordered regions of $30 consecutive
residues as compared to the EU_SW proteins,
while ,3.6-fold more of the EU_SW proteins had
such regions of predicted disorder in comparison
to the O_PSB_S25 proteins. When analyzed by
percentages of residues, the HCAP proteins had
,1.8-fold more predicted disorder than EU_SW,
and ,8.6-fold more disorder than O_PDB_S25 for
regions with $30 consecutive disorder predictions;
these estimates of disorder rise to ,2.6-fold and to
.350-fold, respectively, for regions with $60 con-
secutive disorder predictions (Figure 1(b)). Thus,
HCAP and AfCS proteins were innately richer in
predicted disorder than the typical eukaryotic
proteins.

Signaling and cancer-associated proteins are
highly interrelated,15 and the increased amount of
predicted disorder in these two protein datasets
reflects this connection. Over-expression or con-
stitutive activation of some oncogenes may contri-
bute to the loss of cell-cycle control observed in
many tumors.16 A large number of proto-
oncogenes (i.e. c-jun, c-fos, c-myc ) code for tran-
scription factors required for cell-cycle progression
and cell differentiation. Experimental evidence of
disorder in signaling and oncoproteins further sup-
port our disorder predictions. For example, the N
terminus of tumor suppressor Arf regulates p53
function through binding to oncoprotein Hdm2
and is unstructured in solution.17 The C-terminal
activation domain of c-fos in its biologically active
form is structurally disordered.18 This domain
interacts directly with multiple transcription
factors: TBP, TFIIH, CBP and Smad3,19 – 21 and acti-
vates transcription in different cellular processes.
Disorder would be a significant factor contributing
to the conformational freedom of this domain and

Table 1. Description of four protein datasets

Database
name

No. pro-
teins in

database

No.
proteins

for
predict.

Max.
protein
length
(res.)

Average
length
(res.)

Median
length
(res.)

HCAP 231 231 3969 620 462
AfCS 2329 2325 5038 588 465
EU_SW 53,630 53,602 6669 408 334
PDB_S25 1138 1136 965 206 171

Proteins shorter than 30 amino acid residues (res.) were
eliminated from the PONDR VL-XT predictions.
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allowing it to associate with numerous partners.
Two more examples of intrinsically disordered
domains that become ordered upon synergistic
folding are ACTR and CBP.22

Eukaryotic proteins often contain multiple struc-
tured domains connected by flexible linkers.
Experimentation on a small collection of linkers
indicated that high percentages of their residues
were predicted to be disordered by PONDR
VL-XT (our unpublished results). Thus, the com-
mon occurrence of multiple domains connected by
flexible linkers probably underlies the finding that
47(^4)% of EU_SW have $30 consecutive residues
predicted to be disordered. The signaling and
cancer-associated proteins, however, are even
richer in predicted disorder than typical eukaryotic
proteins. This additional disorder is proposed to
relate to the signaling and regulatory functions of
these proteins. Such interpretation is supported by
our analysis of the functions for about 90 proteins
with long regions of disorder.4

Disorder analysis of distinct protein categories
from SWISS-PROT

We expanded our disorder analysis to include 11
additional datasets representing different types of

human proteins from SWISS-PROT (Table 2 and
Figure 2). The comparison of mean protein lengths
for each dataset shows that they vary over a range
of about 30% with two exceptions: cytoskeletal
and ribosomal proteins (Figure 2(a)). Cytoskeletal
proteins are, in general, considerably longer, while
ribosomal proteins are, on average, much shorter.
The differences in sequence lengths between the
datasets are important for our disorder analysis:
the longer proteins would be expected by chance
to have longer regions of predicted disorder.

PONDR VL-XT was applied to the different pro-
tein categories from SWISS-PROT (Figure 2(b) and
(c)). Similar to our previous analysis, cancer-associ-
ated and regulatory proteins show significantly
more disorder than most of the other protein
categories, whether expressed as percentage of
proteins (Figure 2(b)) or as percentage of residues
(Figure 2(c)). A comparable amount of disorder is
predicted for cytoskeletal proteins, and starting
from $40 residues, the percentage of proteins
with predicted disorder in these three protein
categories is significantly higher (up to 2.5-fold)
than in all other datasets.

The increased lengths of the cytoskeletal proteins
(Table 2 and Figure 2(a)) may partially account for
the higher percentage of proteins with predicted

Figure 1. PONDR VL-XT disorder
prediction results on four datasets.
(a) Percentages of proteins in the
four datasets with $30 to $100
consecutive residues predicted to
be disordered. The error bars rep-
resent 95% confidence intervals
and were calculated as described in
Materials and Methods. The
O_PDB_S25 dataset provides a
mostly non-redundant control for
estimating the false-positive dis-
order prediction error rate. (b) Per-
centages of residues in the four
datasets predicted to be disordered
within segments of length $ the
value on the x-axis.
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disordered regions in this dataset (Figure 2(b)). The
analysis on a per residue basis (Figure 2(c)), how-
ever, also indicated a large amount of disorder,
implying that the increased length does not com-
pletely explain the higher percentage of predicted
disorder in this category. To test the possibility
that disorder in the cytoskeletal set is linked to the
coiled-coil regions, COILS predictions23 were corre-
lated with PONDR VL-XT disorder predictions.
For the cancer-associated, regulatory, and cyto-
skeletal proteins, 4%, 2% and 10% of all residues,
respectively, and 7.5%, 2.1%, and 16.6% of
putatively disordered residues, respectively, were
predicted to be in coiled-coil helices. These data
suggest that cytoskeletal proteins are indeed richer
in coiled coils as compared to the other two
categories, and that coiled coils are often predicted
to be disordered by PONDR VL-XT. However,
coiled coils accounted for less than 20% of the
putatively disordered residues in cytoskeletal
proteins. An additional contributor to the high dis-
order content in this category is that most of these
proteins form filamentous structures in addition to
coiled-coil assemblies, and the formation of such
protein–protein interactions often involves regions
of intrinsic disorder.24 A final comment on the
grouping of cytoskeletal proteins with regulatory
and cancer-associated proteins is that many cyto-
skeletal proteins are involved in cell-signaling,25,26

playing key roles in T-cell activation,27 platelet-
signaling,28 and cancer development.29

Nearly 68(^11)% of ribosomal proteins have
predicted disordered regions of $30 residues
(Figure 2(b)). Although this value is somewhat
lower than the 85(^2)% of regulatory proteins
and 79(^4)% of cancer-associated proteins, the dis-
order in ribosomal proteins should still be con-
sidered substantial due to the decreased average
length of proteins from this category (Figure 2(a)).
Moreover, for regions of #30 residues, the percent-
age of disordered residues in the ribosomal dataset
becomes comparable to that in HCAP, regulatory
and cytoskeletal categories (data not shown). Our
predictions are strengthened by the experimental
evidence of disorder in numerous ribosomal
proteins when separated from the ribosome.30,31

The high ratio of charged to hydrophobic amino
acid residues has been suggested as the likely
cause of the observed disorder in these proteins.32,33

Although the regulatory (851 proteins) and AfCS
(2329 proteins) datasets differ quantitatively and
qualitatively, we observed similar disorder predic-
tion results for both (compare Figures 1(a) and
2(b)). Our analysis applied to these two inde-
pendently constructed sets strongly supports the
increased amount of disorder in proteins involved
in cell-signaling and regulation. Interestingly, the
proteins that perform mainly catalytic cellular
functions (for example, metabolism, biosynthesis,
and degradation), have significantly less predicted
disorder. We suggest that regulatory proteins or
domains are disordered without their binding
partners, whereas catalytic proteins or domains
form well-defined, folded 3D structure even in the
absence of their substrates. As discussed pre-
viously, molecular recognition by ordered protein
structure may be involved predominantly in cata-
lysis, while molecular recognition by disordered
structure may be especially important for regu-
lation and signaling.4

The 3D structural information for
representative protein datasets

We previously observed that proteins in the PIR
and SWISS-PROT databases contain substantially
more predicted disorder than the proteins in PDB,
evidently because the requirement for crystalliza-
tion biases PDB against proteins with long regions
of disorder.34,35 If indeed HCAP proteins are as
rich in disorder as predicted, these proteins should
be under-represented in PDB. To test this possi-
bility, we searched PDB for homologues using the
gapped-BLAST alignment algorithm (Materials
and Methods). In many cases, single sequences
were homologous to multiple protein structures in
PDB. The percentage of each sequence that aligned
with one or more 3D structures (PDB coverage)
was plotted versus the length of each protein in
Figure 3. The plots were constructed for HCAP
(Figure 3(a)) and three representative, non-
membrane protein control sets: biosynthesis

Table 2. Description of 11 protein datasets from SWISS-PROT

Database name No. proteins in database No. proteins for predict.
Max. protein length

(res.)
Average length

(res.)
Median length

(res.)

Regulation 851 851 3969 548 458
Cytoskeletal 134 134 6669 1044 732
Ribosomal 104 103 547 187 158
Membrane 179 179 3674 632 503
Transport 593 593 4563 545 468
Biosynthesis 245 245 2504 509 445
Inhibitors 113 113 4829 460 352
Kinases 95 95 3056 564 419
Metabolism 112 112 4563 618 511
Degradation 59 56 1290 519 469
G-pr.coup.receptors 339 339 1584 416 365

Proteins shorter than 30 amino acid residues (res.) were eliminated from the PONDR VL-XT predictions.
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Figure 2. Disorder analysis of
functional protein categories from
SWISS-PROT. (a) Average length
distribution of human proteins
from 12 functional categories. The
numbers indicate the average
protein length for each dataset.
(b) Predicted disorder in proteins
from SWISS-PROT. The error bars
represent 95% confidence intervals
and were calculated as described in
Materials and Methods. (c) Percent-
ages of residues in the 12 datasets
predicted to be disordered within
segments of length $ the value on
the x-axis.
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(Figure 3(b)), degradation (Figure 3(c)) and
metabolism (Figure 3(d)). A decreased structural
coverage of the proteins in HCAP compared to
the control sets was evident (Figure 3(a) versus
Figure 3(b)–(d)).

In order to perform a quantitative analysis, the
biosynthesis, degradation, and metabolism data-
sets were grouped together, yielding 416 proteins
versus 231 proteins in HCAP (Table 3). Both groups
had comparable percentages of sequences with at
least partial 3D structural information, 53.6% for
HCAP versus 55.4% for the combined set. However,
over 2.5-fold less HCAP proteins (17.3%) had
.75% PDB coverage in comparison with the
proteins from the three other datasets (44.5%). A
similar difference was observed when the
numbers of aligned residues were analyzed: of the
141,369 residues in HCAP, only 29,825 (21%) align
with homologous 3D structures, while, of the
222,987 residues in the combined group, 93,365
(42%) align with structures. The twofold smaller
amount of structural information for the cancer-
associated proteins further supports our disorder
predictions.

Correlation of disorder predictions with the
experimental structural data for HCAP

To compare disorder predictions directly with
available structural data for the cancer-associated
proteins, we selected 15 proteins with .45% dis-
ordered residues from the HCAP dataset (Table 4).
Information detailing ordered 3D structure was
found for only 13 fragments from seven of these

Figure 3 (legend opposite)

Table 3. Structural coverage of proteins from HCAP and
three representative non-membrane categories

HCAP

Biosynthesis þ
metabolism þ
degradation

Coverage
(% residues)

No.
proteins

%
Proteins

No.
proteins

%
Proteins

0–25 33 14.3 7 1.7
25–50 32 13.8 14 3.4
50–75 19 8.2 24 5.8
75–100 40 17.3 185 44.5

Total proteins 124/231 53.6 230/416 55.4
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15 proteins, comprising 882 residues of the total of
7543, or just 11.7%. Not a single structure has been
solved for any of the 15 full-length proteins,
despite the likelihood of numerous structure deter-
mination attempts.

Comparison of the PONDR VL-XT disorder
analysis with available structural information for
the seven above-noted proteins reveals that the
long predictions of order correlate well with
determination of 3D structure (Figure 4). The

Figure 3. Structural coverage of
the HCAP, biosynthesis, degra-
dation, and metabolism datasets.
Four datasets were used in a
BLAST search for homologous
proteins with known 3D structure
as described in Materials and
Methods. The x-axis gives the
length of each protein, and the
y-axis shows the percentage of the
sequence of each protein for which
the structure has been determined.
The percentage coverage was calcu-
lated as the total number of
residues that align with PDB struc-
tures divided by the total protein
length. (a) HCAP dataset, circles;
(b) biosynthesis dataset, upward
triangles; (c) degradation dataset,
diamonds, and (d) metabolism
dataset, downward triangles.

Table 4. The 15 proteins from HCAP with .45% of residues predicted to be disordered

Protein name
SWISS-PROT
accession no.

Protein length
(res.)

No. dis.
residues

Overall %
disordera

Longest
DRb

Longest DR
loc.

FRAT-1 proto-oncogene FRT1_HUMAN 279 242 86.7 85 38–122
EWS oncogene EWS_HUMAN 656 524 79.9 286 9–294
FUS oncogene FUS_HUMAN 526 382 72.6 252 3–254
Cyclin-dep. kin. inhib. p57 CDNC_HUMAN 316 226 71.5 156 109–264
AF4 proto-oncogene AF4_HUMAN 1210 863 71.3 430 521–950
c-jun proto-oncogene AP1_HUMAN 331 212 64 117 172–288
L-myc-1 proto-oncogene MYCL_HUMAN 364 233 64 87 217–303
Homeobox protein Hox-11 HX11_HUMAN 330 203 61.5 111 56-166
c-fos proto-oncogene FOS_HUMAN 380 232 61 107 73–179
N-myc proto-oncogene MYCN_HUMAN 464 265 57.1 85 202–286
C-ski oncogene SKI_HUMAN 728 415 57 155 421–553
Mdm2 oncoprotein MDM2_HUMAN 491 279 56.8 81 109–189
c-myc proto-oncogene MYC_HUMAN 439 247 56.3 94 203–296
Tumor protein p73 P73_HUMAN 636 349 54.9 121 367–487
Tumor suppressor p53 P53_HUMAN 393 187 47.6 66 34–99

a Overall percentage disorder represents the fraction of the residues predicted to be disordered.
b The number of residues in the longest predicted disordered region (longest DR) and the first and last residue numbers in the

longest predicted DR (longest DR loc.) are given in the two right-most columns, respectively.
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DNA-binding domain of p53, the fragment of
Mdm2 interacting with p53, and the N-terminal
part of p73 SAM-like domain all exhibited strong
tendencies to be ordered by the PONDR VL-XT
analysis.

Given that PONDR VL-XT was trained using
segments longer than 40 consecutive amino acid
residues, short regions of 3D structure show less
accurate agreement with predictions. These short
regions include three from p53 (the tetramerization
domain, the Mdm2-binding domain, and the
S100B-binding domain) and three leucine zippers
(one each from c-fos, c-jun and c-myc ) (Figure 4).
PONDR VL-XT predicted a combination of ordered
and disordered regions for all of these segments.
Interestingly, these regions together with several
others indicated by asterisks in Figure 4, all
undergo disorder-to-order transitions upon oligo-
merization or upon binding with partners.

If the leucine zippers and the other fragments
known to undergo disorder-to-order transitions
are deleted from the set of ordered fragments, an
overall PONDR VL-XT prediction accuracy of 90%
is obtained. This value compares favorably with
the 80% accuracy observed when the same predic-
tor was applied to about 900 proteins containing
about 220,000 ordered residues.2 Thus, PONDR
VL-XT predicts the regions of known 3D structure
in the analyzed proteins correctly.

Just as the 3D structural information for the 15
proteins from Table 4 is very limited, the experi-
mental data for the lengths and locations of their
disordered regions is also sparse (Figure 4). NMR
and CD studies indicate disorder for 580 residues,
corresponding to ,8% of the total of 7543 amino

acid residues in these 15 proteins. One of them,
p57Kip2, which is involved in cell-cycle arrest by
inhibiting cyclin-dependent kinases, was found by
CD, NMR and hydrodynamic methods to be dis-
ordered completely,36 while another, p53, shows
disordered tails by NMR of the full-length
protein.37

Of the 580 disordered residues, 546 have been
shown to be involved in coupled folding and bind-
ing. For example, the polypeptide corresponding to
the c-myc transactivation domain showed a
random conformation as determined by CD38 until
it interacted specifically with TBP, and this binding
was accompanied by induction and stabilization of
the secondary structure in the polypeptide. Other
disordered segments such as the Arf interacting
region and the RING finger domain of Mdm2
undergo similar transitions from random coil-like
conformation to regular secondary structures.39,40

The C-terminal domain of the transcription factor
c-fos18 is intrinsically disordered in the absence of
interacting partners. For long protein fragments,
such as the C terminus of c-fos, it is frequently
unclear whether the observed disorder is intrinsic
or results from the absence of stabilizing tertiary
contacts.

The accuracy of PONDR VL-XT for the charac-
terized regions of disorder was 64%, which is com-
parable to the 63% estimated from over 140
proteins containing more than 17,000 disordered
residues.2 The lower level of accuracy of disorder
versus order predictions has multiple causes, as
discussed elsewhere in more detail.41 In brief, the
characterization of order by X-ray diffraction and
NMR is unambiguous, with atomic coordinates

Figure 4. Comparison of PONDR VL-XT disorder predictions and experimental structural data for HCAP. The upper
bar represents PONDR VL-XT predictions: red for disorder (PONDR VL-XT prediction score $0.5) and blue for order
(PONDR VL-XT prediction score ,0.5). The lower bar represents experimentally verified order and disorder: red
with backward slash signifies experimentally verified disorder, blue with forward slash signifies experimentally
verified order, and white signifies the lack of structural information. The x-axis represents the residue number for
each protein. The names of interacting partners and the methods used for order and disorder determination are
shown under the lower bar. An asterisk ( p ) indicates that the region undergoes disorder-to-order transition upon
binding to partner(s) or upon change in solvent conditions.
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being assigned for each ordered residue, whereas
the characterization of disorder is usually
ambiguous. For example, X-ray-characterized dis-
order corresponds to regions with missing electron
density, but such regions can result from ordered,
wobbly domains. Protein regions characterized by
NMR frequently contain local segments that
undergo disorder-to-order transitions upon bind-
ing with a partner. The predictions of order in
such disordered regions are probably not true
errors, but rather anticipate the formation of order
upon binding.42 Finally, when using CD for the
global structure estimates, the signals from ordered
regions can be obscured by the signals from dis-
ordered regions, and the CD-characterized dis-
order is expected to contain a considerable
fraction of ordered residues. Overall, this
ambiguity in disorder characterization is probably
the most important factor leading to the lower
apparent prediction accuracy for regions of
disorder.

Importance of disorder for cell signaling
and cancer

What is the significance of our observations? Is
there any advantage to being disordered for the
biological functions performed by cancer-
associated and signaling proteins? Intrinsically
unstructured proteins are involved frequently in
numerous processes in the cell: transcriptional acti-
vation, cell-cycle regulation, membrane transport,
molecular recognition and signaling.1 The lack of
folded structure might give these proteins
functional advantage over globular proteins with
well-defined 3D structure: the ability to bind to
multiple different targets without sacrificing
specificity. Moreover, intrinsic disorder might be
responsible for the binding diversity of the
proteins involved in the broad cascade of protein–
protein interactions. Therefore, the amount of
intrinsic disorder in highly connected proteins
would be expected to correlate with the number of
their interacting partners. Our disorder predictions
on several proteins that form hubs and nodes in
signaling networks (data not shown) are consistent
with this suggestion.

Eukaryotic cell-signaling proteins carry
numerous post-translational modifications that
occur frequently in disordered regions.2 The regu-
lation of the c-src tyrosine kinase is controlled via
tyrosine phosphorylation in the activation loop: in
the inactive conformation, the loop is ordered and
tyrosine is not phosphorylated, whereas upon
kinase activation the loop becomes flexible and dis-
ordered facilitating the exposure of tyrosine for
phosphorylation.43 The majority of sites in p53
that are phosphorylated by casein and protein
kinases are located in the putatively disordered
N-terminal transactivation domain and C-terminal
basic tail.37,44 Unstructured regions of 4E-BP con-
tain multiple phosphorylation sites that play an
important role in the regulation of 4E-BP binding

to eIF4E and the correlated regulation of trans-
lation by eIF4E.45 The disordered tails of histones
frequently carry a large network of post-transla-
tional modifications that are crucial for differential
regulation of chromatin activity.46 Inactivating
phosphorylation of the unstructured loop region
of Bcl-2 by CDK leads to the loss of its anti-
apoptotic activity.47 These examples indicate that
post-translational modifications occur often in
regions of intrinsic disorder. Perhaps the ability to
fold onto the surface contours of modifying
enzymes provides a selective advantage for localiz-
ing chemical modification sites in the disordered
regions.4

Investigation of the evolutionary rate of the yeast
protein interaction network suggests that it
changes rapidly, with as many as half of all protein
interactions being replaced by new ones every
300 Myr.48 Interestingly, comparison of the
evolutionary rates of several protein families indi-
cates that the disordered protein regions evolved
significantly faster than the ordered regions.49 The
use of disorder for signaling interactions might
facilitate the adaptability of such rapidly evolving
networks.

All cellular-signaling processes demand finely
tuned regulation and fast removal of some proteins
from the cell. Disordered regions likely carry the
signals for proteolytic degrading machinery as an
integral part of their overall regulatory function.
For example, the ubiquitin-mediated proteolysis of
the c-Myc protein is governed by its transcriptional
activation domain,50 shown to be unstructured
without its binding partner.38

In conclusion, protein disorder plays an import-
ant role in many key cellular processes, and it
may be involved directly in mediating interactions
between highly connected proteins in signaling
networks.

Implications of disorder for the discovery of
anti-cancer drugs

Combining and integrating bio- and chemo-
informatics promises to open new perspectives in
the drug discovery process, from the identification
of novel targets to the development of lead com-
pounds with desired properties.51 Current struc-
ture-based drug design strategies,52,53 however, do
not employ information on intrinsic disorder. Pre-
dictive algorithms such as PONDR could identify
disordered regions that are very unlikely either to
crystallize or to bind drug molecules by the
traditional lock-and-key mechanisms. Such infor-
mation would be extremely useful at the early
stages of target selection. Furthermore, disorder
predictors can help identify local domains within
longer regions of disorder that would be amenable
to structure determination, similar to the domains
in p53, Mdm2, and p73 (Figure 4). Combining pre-
dictions of intrinsic disorder with other techniques
provides an alternative strategy for protein struc-
tural characterization. For example, we used
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PONDR in combination with limited proteolysis54

and mass spectrometry55 to characterize the
disordered regions in two proteins, clusterin and
XPA.

The development of new approaches to discover
drug molecules that target intrinsically disordered
protein regions should be a high priority. The
important anti-cancer drug taxol, which was dis-
covered in a random screen,56 may act by inducing
tubulin polymerization.57 Since taxol binding is
associated with protection of highly sensitive pro-
tease digestion sites, the tubulin-binding site likely
involves a region of intrinsic disorder. In addition,
taxol interacts with an intrinsically disordered
region in Bcl-258,59 and thereby alters the apoptotic
signaling pathway, perhaps by leading to enhanced
Bcl-2 phosphorylation.60,61 The common occurrence
of intrinsic disorder in cancer-associated and sig-
naling proteins and the ability of taxol to specifi-
cally bind to disordered protein regions suggest
that disorder information should be employed in
the development of new strategies for the
discovery of anti-cancer drugs.

Materials and Methods

Sequences and datasets

(1) Human cancer-associated proteins (HCAP); the
dataset of 231 HCAP was extracted from SWISS-
PROT† using keywords “anti-oncogene OR oncogene
OR proto-oncogene OR tumor” in the description
field and “human” in the organism field.

(2) Signaling proteins (AfCS); the non-redundant
dataset of 2329 proteins involved in cellular signaling,
was created by the Alliance for Cellular Signaling‡.

(3) The eukaryotic fraction of SWISS-PROT
(EU_SW); a non-redundant dataset of 53,630 protein
sequences was extracted from SWISS-PROT by query
“eukaryota” in the organism field.

(4) Ordered PDB_Select_25 (O_PDB_S25), 1138
entries; a dataset containing only the ordered parts of
the proteins from PDB Select 25§, a non-homologous
subset of the structures in PDB consisting of a single
representative structure for protein families whose
members have ,25% sequence identity. O_PDB_S25
was constructed by removing the disordered regions
(i.e. residues with backbone atoms that are not
observed in X-ray crystal structures) from the PDB
Select 25 protein sequences.

(5) A total of 11 additional datasets (Table 2) were
extracted from SWISS-PROT using keywords “regu-
lation”, “cytoskeleton”, “ribosomal”, “membrane”,
“transport”, “biosynthesis”, “inhibitor”, “kinase”,
“metabolism”, “degradation”, or “G-protein coupled
receptor” combined with “human” in the organism
field. They represent functional categories of human

proteins involved in various cellular processes. These
datasets overlap, i.e. the same protein can be present
in several datasets. For example, trithorax-like protein
HRX can be found in both HCAP and regulation data-
sets, because it is a proto-oncogene involved in acute
leukemias, and at the same time it acts as a transcrip-
tional regulatory factor.

Disorder predictor and the error rate

Predictions of intrinsic disorder in proteins were made
using PONDR VL-XT.14 Briefly, VL-XT was formed by
merging three neural network predictors of disorder;
one for N-terminal regions, a second for internal regions
and a third for C-terminal regions. The merger was
accomplished by performing overlapping predictions,
followed by averaging the outputs. The VL-XT training
set included disordered segments of 40 or more amino
acid residues as characterized by X-ray and NMR for
the predictor of the internal regions, and segments of
five or more amino acid residues for the predictors of
the two terminal regions. The false-positive error rate in
the prediction of disorder for an ordered residue in
O_PDB_S25 is 20% but it drops to 0.4% for $40 consecu-
tive predictions of disorder. The false-negative error rate
is 37% on a per residue basis when VL-XT is applied to
140 proteins (containing .17,000 residues) that have
experimentally characterized disordered regions of at
least 30 amino acid residues. This rate decreases to 11%
for ordered regions of $40 residues. Because the false-
negative error rate is greater than the false-positive
error rate, VL-XT most likely underestimates the occur-
rence of long disordered regions in proteins.

Statistical analysis

An analysis of variability in the percentage of proteins
with predicted disorder was performed by bootstrap
resampling.62 For each dataset from Table 1, 231 proteins
were sampled randomly with replacement. For the func-
tional protein categories from Table 2, the number of ran-
domly sampled proteins for each dataset was equal to
the number of proteins in the dataset. The fraction of
proteins with disordered regions of a given length was
determined for each sample. The datasets were sampled
1000 times, and these values were used to calculate the
standard error of the fractions for each dataset. The 95%
confidence intervals were calculated from the standard
errors and are shown as error bars in Figures 1(a) and
2(b). Non-overlapping confidence intervals indicate that
the fractions are significantly different.

Identification of putative structural homologues
from PDB

The gapped-BLAST algorithm63 was used to compare
sequences in PDB with those in the various datasets.
The filter for low sequence complexity was turned off,
and the default scoring matrix (BLOSUM 62) was used.
A putative structural homologue was identified if the
sequence match covered at least 85% of the residues in
the PDB structure with a sequence identity of at least
30%.

† http://www.expasy.ch/sprot
‡ http://www.cellularsignaling.org
§ http://www.cmbi.kun.nl/swift/pdbsel
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289, 905–920.

32. Williams, R. J. P. (1979). The conformational proper-
ties of proteins in solution. Biol. Rev. Camb. Phil. Soc.
54, 389–437.

33. Uversky, V., Gillespie, J. & Fink, A. (2000). Why are
“natively unfolded” proteins unstructured under
physiologic conditions? Proteins: Struct. Funct. Genet.
41, 415–427.

34. Romero, P., Obradović, Z., Kissinger, C. R.,
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