
 
HOMEWORK 2 SOLUTIONS - NEURAL COMPUTATION 

 
Problem 1) 
 
 The implementation of the pocket algorithm can be found in the appendix. The 
double-moon dataset is here (I made some modification in the data generation process). 
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Fig 1: Double-moon dataset for d = -1 

 
 

Here is the Decision boundary obtained by applying pocket algorithm on the above 
dataset with comparison to result obtained from perceptron algorithm: 
 

 
Fig 2: Performances of Pocket algorithm over Perceptron algorithm for d = -1. Perceptron classifies 1934 

points correctly whereas pocket classifies 1955 points correctly. 
 
 



Problem 2) 
  
 A feed forward Neural network was implemented using MATLAB NN toolbox. A 
two layer NN with  4 hidden layers were implemented. The training data was normalized 
and fed to the network to be fitted. NN was trained using back-propagation algorithm. 
Here is the classification result. 
 

 
Fig 4: Classification with Neural Network. 4 hidden layers produces an accuracy of 98.15%. 6 hidden 

produces 100% accuracy.  
 
 
 
Problem 3) 
 
 a) Data Preprocessing:  No data cleaning was required. The first feature ID was 
ignored because it is an artificially generated number, having no relation with the actual 
data. Second feature is the target variable which was mapped in {1,-1} using following 
rule obtained from data description file: 
 
 I.    If column2  == ‘R’ and column3 < 24  then class = 1 
 II.   If column2  == ‘N’ and column3 >= 24  then class = 0 
 III   Else ignore that record. 
 
Using the above rules, the number of data points were reduced to 140 from 198. 
 
b) Dimensionality reduction:  There were 31 features in dataset and only 140 data points 
(Only 112 will be used as training set in each iteration). So it was required to apply some 
dimensionality reduction technique in order to build a good classifier.  



 We found there were a huge correlation among some of the features (See figure 
5). So we removed the features having correlation more than 0.9 with other features. 
Then we applied PCA on the remaining features to reduce the number of attributes to 9 
(Still 95% of the original variance was retained). 
 

 
Fig 5: Correlation matrix of features before (10 out of 31) and after (9 out of 9) dimensionality reduction 

 
c) Training: 5 Cross validation was performed by dividing the entire dataset in 5 equal 
parts. In each iteration 20% (one part) was used as test data and the NN was trained with 
the rest 80% (four parts) after normalization. The average accuracy for 5 such iterations 
were reported for different number of hidden nodes (5 to 10), learning rate (e-4 to e0 with 
a step of e-0.5) and momentum (1 to 0.5 with a step of -0.1). Following result was 
obtained:  
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Fig 6: Accuracy Obtained with different number of hidden layers, learning rate and momentum parameters. 



 
 

From the above figure it seems there is little variation in accuracy for different hyper-
parameters. Best result is obtained for following combination: 
 
Best combination: 
No. hidden layers = 5 
Learning Rate = 0.0001 
Momentum = 1 
Accuracy = 0.85  
 
 
Problem 4)  
 
 There is only one difference between this problem and problem 3. The target 
variable in last problem was a binary class and that in this problem is a continuous 
variable (Classification vs. Regression problem). Everything else was same. We followed 
the same preprocessing and dimensionality reduction schemes in this problem and 
reported the R2 accuracy instead of fraction correct. But we could only obtain an 
extremely poor accuracy (-0.485).  
 The reason for this poor performance might be the multimodal distribution of 
target variable which is given in fig 7. 
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Fig 7: Histogram of time to recur 

 
From the data description it was found that this target variable has different meaning 
depending on different values of column 2 (Recurrent/non-recurrent). For recurrent type 
this is recur time and for non-recurrent type this is disease-free time. So we split the data 
into two parts based on N/R values of column 1 and applied NN. We got following 
accuracies: 
 



Recurrence Accuracy 
       R       -0.166 
       N     -0.8326 
 
So, the accuracy was still not satisfactory. So we conclude  
 
1) Either there is no correlation between the attributes and targets, i.e. the target is not 
learnable. 
 
2) Or, The functional relation between attributes and the target is too complex and need 
more training data to accurately learn the function. 
 
 

APPENDIX 
 

Pocket Algorithm: 
 
x = [ones(2000,1) dataset(:,1:2)]; 
  
lr = 0.1;                 % Learning Rate 
w = [0 0 0]';             % Initial Weight 
pocketW = w;              % Initial weights in pocket; 
X1 = -15:25; 
epoch = 1; 
acc = sum(dataset(:,3)'==((w'*x'>= 0)+(w'*x'>= 0)-1));     %Accuracy of 
the machine at hand 
accPocket(epoch) = acc;                                         
%Accuracy of the machine in pocket  
  
while(accPocket(epoch)~=2000) 
    i=mod(epoch,size(dataset,1))+1; 
    f = (w'*x(i,1:3)'>=0)+((w'*x(i,1:3)'>=0)-1);              
    w = w + lr*(dataset(i,3) - f)*x(i,1:3)'; 
    acc = sum(dataset(:,3)'==((w'*x'>= 0)+(w'*x'>= 0)-1)); 
    if(acc > accPocket(epoch)) 
        pocketW = w; 
        accPocket(epoch+1) = acc; 
    else 
        accPocket(epoch+1) = accPocket(epoch); 
    end 
     
    epoch=epoch+1; 
    if(epoch==100000) 
        break; 
    end 
end 
  
finalW = pocketW; 
plot(X1,(-finalW(1)/finalW(3))-(finalW(2)/finalW(3))*X1,'k-'); 
disp(sprintf('Solution reached in %d epochs', epoch)); 
disp(sprintf('%d point classified correctly',accPocket(end))); 


