
Problem 2

Data set: 337 data with 12 attributes.
(a)
I did five cross validation on the data set, and repeat the experiment 5 times, then
recording the results as following.

Neural network I used:
10 hidden nodes with ‘logsig’ function, one output neuron with linear function ‘purline’.
Maximum epochs: 200

R_ square 0.3526 0.4256 0.3825 0.4047 0.3870

Mean R_square: 0.3905

(b)
First, I try to remove the redundant features. The correlation between each pair of
features is shown in the following figure:

0500010000020400501000100200010020001002000204001020020400200400010020000.20.400.20.4
0

5000
100000

20
400
50

1000
100
2000
100
2000
100
2000
20
40
0

10
200
20
40
0

200
4000
100
2000
0.2
0.4

0
0.2
0.4

As we can see in the figure, some features are high correlated each other. First, I remove
some of these features, then retrain the model to see whether removing such high
correlated features can improve the accuracy.
I removed 3 redundant features. The new accuracy is about 0.3, which means removing
redundant features does not help to improve the accuracy.

Next step, I try to remove some outlier.
I apply an outlier detection algorithm (downloaded from:
http://www.mathworks.com/matlabcentral/fx_files/11106/1/outlier.m) to the data.
After applying the algorithm, I remove 20 outliers. Than I retrain the model, the R square
I get now is also about 0.3.

Conclusion, using all data with all attributes can result in a higher accuracy, since in my
experiments neither removing high-correlated features nor removing outliers can improve
the accuracy.

Problem 3
Data set: 196 attributes, 2500 data.

First, I remove the attributes with only zero value, since such attributes will not
contribute to build the model. After this preprocessing, the final data set has 174
attributes and 2500 data.

(a) I use two training algorithm here. First one is ‘traingd’ which is using Gradient
Descent method to optimize the weights. The other one is ‘trainlm’ which is using
Levenberg Marquardt algorithm.

The comparison between two methods in terms of number of epochs, running time and
accuracy is listed in the following table.

Method Epochs Running time Accuracy
Gradient Descent 700 55.48 0.35
Levenberg Marquardt 15 169.9 0.75

Then I plot the Roc curve of these two methods. I plot 10 figures, each figure corresponds
to the Roc curve of one class. Please see the following figures.
From these figures we can also conclude, training method using a second-order
optimization methods is much better than gradient descent on this baseball data set.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Class1

True Positive Rate

F
al

se
 P

os
iti

ve
 R

at
e

Gradient Descent

Levenberg Marquardt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Class2

True Positive Rate

F
al

se
 P

os
iti

ve
 R

at
e

Gradient Descent

Levenberg Marquardt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Class3

True Positive Rate

F
al

se
 P

os
iti

ve
 R

at
e

Gradient Descent

Levenberg Marquardt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Class4

True Positive Rate

F
al

se
 P

os
iti

ve
 R

at
e

Gradient Descent

Levenberg Marquardt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Class5

True Positive Rate

F
al

se
 P

os
iti

ve
 R

at
e

Gradient Descent

Levenberg Marquardt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Class6

True Positive Rate

F
al

se
 P

os
iti

ve
 R

at
e

Gradient Descent

Levenberg Marquardt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Class7

True Positive Rate

F
al

se
 P

os
iti

ve
 R

at
e

Gradient Descent

Levenberg Marquardt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Class8

True Positive Rate

F
al

se
 P

os
iti

ve
 R

at
e

Gradient Descent

Levenberg Marquardt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Class9

True Positive Rate

F
al

se
 P

os
iti

ve
 R

at
e

Gradient Descent

Levenberg Marquardt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Class10

True Positive Rate

F
al

se
 P

os
iti

ve
 R

at
e

Gradient Descent

Levenberg Marquardt

(b) and (c)

In these two parts, I tried two things.
First one is building a Radial Basis Function network to build the prediction model, the
other one is apply SVM with polynomial kernel. The comparison among these two
methods and the methods applied in problem (a) is listed in the following table:

Methods Running time (s) Accuracy

Gradient Descent 55.48 0.35

Levenberg Marquardt 169.9 0.75

Radial Basis 22.01 0.83

SVM 96.53 0.86

Conclusion:
1. Second-order optimization is time consuming which is what we can expect and it can
get higher accuracy than Gradient Descent methods.

2. SVM and Radial Basis are better choice in such classification problem, especially
SVM, it gets highest accuracy.

3. However, here the size of our data is not to big (2500 data), if we have huge data set,
SVM is not a good choice as Radial Basis method, since SVM is more time consuming.

